Search Header Logo

Partial Differentiation

Authored by Nurul Azmi

Mathematics

University

Used 164+ times

Partial Differentiation
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

7 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the first order partial derivative with respect to y
 f(x,y)=x3y2+3xeyf(x,y)=x^3y^2+3xe^y  
.

 fy(x,y)=3x2y2+3eyf_y(x,y)=3x^2y^2+3e^y  

 fy(x,y)=3x2y2+2x3y+3ey+3xeyf_y(x,y)=3x^2y^2+2x^3y+3e^y+3xe^y  

 fy(x,y)=2x3y+3xeyf_y(x,y)=2x^3y+3xe^y  

 fy(x,y)=6x2+3eyf_y(x,y)=6x^2+3e^y  

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the second order partial derivatives of   f(x,y)=(3x+2y)4f(x,y)=(3x+2y)^4  

 fxx(x,y)=12(3x+2y)2 ,  fyy(x,y)=24(3x+2y)2f_{xx}(x,y)=12(3x+2y)^2\ ,\ \ f_{yy}(x,y)=24(3x+2y)^2  

 fxx(x,y)=36(3x+2y)2  ,  fyy(x,y)=8(3x+2y)3f_{xx}(x,y)=36(3x+2y)^2\ \ ,\ \ f_{yy}(x,y)=8(3x+2y)^3  

 fxx(x,y)=24(3x+2y)2  ,  fxy(x,y)=32(3x+2y)f_{xx}(x,y)=24(3x+2y)^2\ \ ,\ \ f_{xy}(x,y)=32(3x+2y)  

 fxx(x,y)=108(3x+2y)2  ,  fyy(x,y)=48(3x+2y)2f_{xx}(x,y)=108(3x+2y)^2\ \ ,\ \ f_{yy}(x,y)=48(3x+2y)^2  

3.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

 What is the mixed, second order partial derivative of this function.  f(x,y)=2x2+y2f\left(x,y\right)=\sqrt{2x^2+y^2} 

 fxx(x,y)=2(2x2+y2)124x2(2x2+y2)32f_{xx}(x,y)=2(2x^2+y^2)^{-\frac{1}{2}}-4x^2(2x^2+y^2)^{-\frac{3}{2}}  

 fxy(x,y)=2xy(2x2+y2)32fxy(x,y)=-2xy\left(2x^2+y^2\right)^{-\frac{3}{2}}  

 fyy(x,y)=(2x2+y2)12y2(2x2+y2)32f_{yy}(x,y)=(2x^2+y^2)^{-\frac{1}{2}}-y^2(2x^2+y^2)^{-\frac{3}{2}} 

 fxy(x,y)=4x2(2x2+y2)32f_{xy}(x,y)=-4x^2(2x^2+y^2)^{-\frac{3}{2}}  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

if  f(x,y)=x32xy+xy3+3y2f(x,y)=x^3-2xy+xy^3+3y^2  which of the following is true?

 fx(x,y)=3x22y+y3f_x(x,y)=3x^2-2y+y^3   fy(x,y)=2x+6y+3xy2f_y(x,y)=-2x+6y+3xy^2   fxy(x,y)=6xf_{xy}(x,y)=6x  

 fx(x,y)=2x+6y+3xy2f_x(x,y)=-2x+6y+3xy^2   fy(x,y)=3x22y+y3f_y(x,y)=3x^2-2y+y^3   fxy(x,y)=2+3y2f_{xy}(x,y)=-2+3y^2  

 fxx(x,y)=6xf_{xx}(x,y)=6x   fyy(x,y)=6+6xyf_{yy}(x,y)=6+6xy  
 fxy(x,y)=2+3y2f_{xy}(x,y)=-2+3y^2  

 fxx(x,y)=6+6xyf_{xx}(x,y)=6+6xy   fyy(x,y)=6xf_{yy}(x,y)=6x  
 fxy(x,y)=2+3y2f_{xy}(x,y)=-2+3y^2  

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find  fxf_x  and  fyf_y  from the equation  f(x,y)= ln(x2y3)f\left(x,y\right)=\ \ln\left(\sqrt{x^2y^3}\right)  

 fx=1x       fy=32yf_x=\frac{1}{x}\ \ \ \ \ \ \ f_y=\frac{3}{2y}  

 fx=1xy       fy=3x2yf_x=\frac{1}{xy}\ \ \ \ \ \ \ f_y=\frac{3x}{2y}  

 fx=1x        fy=3x2f_x=\frac{1}{x}\ \ \ \ \ \ \ \ f_y=\frac{3x}{2}  

 fx=x2y3     fy=3x22y3f_x=\frac{x^2}{y^3}\ \ \ \ \ f_y=\frac{3x^2}{2y^3}  

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the Partial derivative of f with respect to y for  f(x,y)=y2x+yf\left(x,y\right)=\frac{y^2}{x+y}  

 2x+y(x+y)2\frac{2x+y}{\left(x+y\right)^2}  

 2xy+y2(x+y)2\frac{2xy+y^2}{\left(x+y\right)^2}  

 2(x+y)\frac{2}{\left(x+y\right)^{ }}  

 2x2+y2(x+y)2\frac{2x^2+y^2}{\left(x+y\right)^2}  

7.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Find  zx\frac{\partial z}{\partial x}  for  z=x2y2exyz=x^2y^2e^{xy}  

 xy2exy(xy+2)xy^2e^{xy}\left(xy+2\right)  

 xyexy(xy+2)xye^{xy}\left(xy+2\right)  

 x2y2exy(xy+1)x^2y^2e^{xy}\left(xy+1\right)  

 2xy2exy(xy+1)2xy^2e^{xy}\left(xy+1\right)  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?