Partial Differentiation

Partial Differentiation

University

7 Qs

quiz-placeholder

Similar activities

Elimination Using Addition and Subtraction

Elimination Using Addition and Subtraction

9th Grade - University

10 Qs

Derivadas

Derivadas

University - Professional Development

10 Qs

optimization using calculus

optimization using calculus

University

10 Qs

Homogeneous SOLDE with constant coefficients

Homogeneous SOLDE with constant coefficients

12th Grade - University

9 Qs

TEORÍA PRELIMINAR: ED LINEALES DE ORDEN SUPERIOR

TEORÍA PRELIMINAR: ED LINEALES DE ORDEN SUPERIOR

University

10 Qs

Soluciones ecuaciones diferenciales

Soluciones ecuaciones diferenciales

University

10 Qs

Implicit Differentiation Practice Part 2

Implicit Differentiation Practice Part 2

10th Grade - University

12 Qs

phân tich đa thức thành nhân tử

phân tich đa thức thành nhân tử

University

10 Qs

Partial Differentiation

Partial Differentiation

Assessment

Quiz

Mathematics

University

Hard

Created by

Nurul Azmi

Used 164+ times

FREE Resource

7 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the first order partial derivative with respect to y
 f(x,y)=x3y2+3xeyf(x,y)=x^3y^2+3xe^y  
.

 fy(x,y)=3x2y2+3eyf_y(x,y)=3x^2y^2+3e^y  

 fy(x,y)=3x2y2+2x3y+3ey+3xeyf_y(x,y)=3x^2y^2+2x^3y+3e^y+3xe^y  

 fy(x,y)=2x3y+3xeyf_y(x,y)=2x^3y+3xe^y  

 fy(x,y)=6x2+3eyf_y(x,y)=6x^2+3e^y  

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the second order partial derivatives of   f(x,y)=(3x+2y)4f(x,y)=(3x+2y)^4  

 fxx(x,y)=12(3x+2y)2 ,  fyy(x,y)=24(3x+2y)2f_{xx}(x,y)=12(3x+2y)^2\ ,\ \ f_{yy}(x,y)=24(3x+2y)^2  

 fxx(x,y)=36(3x+2y)2  ,  fyy(x,y)=8(3x+2y)3f_{xx}(x,y)=36(3x+2y)^2\ \ ,\ \ f_{yy}(x,y)=8(3x+2y)^3  

 fxx(x,y)=24(3x+2y)2  ,  fxy(x,y)=32(3x+2y)f_{xx}(x,y)=24(3x+2y)^2\ \ ,\ \ f_{xy}(x,y)=32(3x+2y)  

 fxx(x,y)=108(3x+2y)2  ,  fyy(x,y)=48(3x+2y)2f_{xx}(x,y)=108(3x+2y)^2\ \ ,\ \ f_{yy}(x,y)=48(3x+2y)^2  

3.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

 What is the mixed, second order partial derivative of this function.  f(x,y)=2x2+y2f\left(x,y\right)=\sqrt{2x^2+y^2} 

 fxx(x,y)=2(2x2+y2)124x2(2x2+y2)32f_{xx}(x,y)=2(2x^2+y^2)^{-\frac{1}{2}}-4x^2(2x^2+y^2)^{-\frac{3}{2}}  

 fxy(x,y)=2xy(2x2+y2)32fxy(x,y)=-2xy\left(2x^2+y^2\right)^{-\frac{3}{2}}  

 fyy(x,y)=(2x2+y2)12y2(2x2+y2)32f_{yy}(x,y)=(2x^2+y^2)^{-\frac{1}{2}}-y^2(2x^2+y^2)^{-\frac{3}{2}} 

 fxy(x,y)=4x2(2x2+y2)32f_{xy}(x,y)=-4x^2(2x^2+y^2)^{-\frac{3}{2}}  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

if  f(x,y)=x32xy+xy3+3y2f(x,y)=x^3-2xy+xy^3+3y^2  which of the following is true?

 fx(x,y)=3x22y+y3f_x(x,y)=3x^2-2y+y^3   fy(x,y)=2x+6y+3xy2f_y(x,y)=-2x+6y+3xy^2   fxy(x,y)=6xf_{xy}(x,y)=6x  

 fx(x,y)=2x+6y+3xy2f_x(x,y)=-2x+6y+3xy^2   fy(x,y)=3x22y+y3f_y(x,y)=3x^2-2y+y^3   fxy(x,y)=2+3y2f_{xy}(x,y)=-2+3y^2  

 fxx(x,y)=6xf_{xx}(x,y)=6x   fyy(x,y)=6+6xyf_{yy}(x,y)=6+6xy  
 fxy(x,y)=2+3y2f_{xy}(x,y)=-2+3y^2  

 fxx(x,y)=6+6xyf_{xx}(x,y)=6+6xy   fyy(x,y)=6xf_{yy}(x,y)=6x  
 fxy(x,y)=2+3y2f_{xy}(x,y)=-2+3y^2  

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find  fxf_x  and  fyf_y  from the equation  f(x,y)= ln(x2y3)f\left(x,y\right)=\ \ln\left(\sqrt{x^2y^3}\right)  

 fx=1x       fy=32yf_x=\frac{1}{x}\ \ \ \ \ \ \ f_y=\frac{3}{2y}  

 fx=1xy       fy=3x2yf_x=\frac{1}{xy}\ \ \ \ \ \ \ f_y=\frac{3x}{2y}  

 fx=1x        fy=3x2f_x=\frac{1}{x}\ \ \ \ \ \ \ \ f_y=\frac{3x}{2}  

 fx=x2y3     fy=3x22y3f_x=\frac{x^2}{y^3}\ \ \ \ \ f_y=\frac{3x^2}{2y^3}  

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the Partial derivative of f with respect to y for  f(x,y)=y2x+yf\left(x,y\right)=\frac{y^2}{x+y}  

 2x+y(x+y)2\frac{2x+y}{\left(x+y\right)^2}  

 2xy+y2(x+y)2\frac{2xy+y^2}{\left(x+y\right)^2}  

 2(x+y)\frac{2}{\left(x+y\right)^{ }}  

 2x2+y2(x+y)2\frac{2x^2+y^2}{\left(x+y\right)^2}  

7.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Find  zx\frac{\partial z}{\partial x}  for  z=x2y2exyz=x^2y^2e^{xy}  

 xy2exy(xy+2)xy^2e^{xy}\left(xy+2\right)  

 xyexy(xy+2)xye^{xy}\left(xy+2\right)  

 x2y2exy(xy+1)x^2y^2e^{xy}\left(xy+1\right)  

 2xy2exy(xy+1)2xy^2e^{xy}\left(xy+1\right)