Partial Differentiation

Partial Differentiation

University

7 Qs

quiz-placeholder

Similar activities

C1 : Partial Differentiation (Set 1)

C1 : Partial Differentiation (Set 1)

University

10 Qs

Regla de la cadena y derivación implícita

Regla de la cadena y derivación implícita

University

10 Qs

Expresiones Racionales (Simplificación)

Expresiones Racionales (Simplificación)

8th Grade - University

12 Qs

MATH0102 QUIZ

MATH0102 QUIZ

10th Grade - University

11 Qs

Terms of Polynomials

Terms of Polynomials

9th Grade - University

12 Qs

Algebraic Expression Basics , Addition and Subtraction.

Algebraic Expression Basics , Addition and Subtraction.

7th Grade - University

10 Qs

Exponential Equations 6, Exponentials and Power Laws

Exponential Equations 6, Exponentials and Power Laws

6th Grade - University

12 Qs

Quiz Pemfaktoran Aljabar

Quiz Pemfaktoran Aljabar

9th Grade - University

10 Qs

Partial Differentiation

Partial Differentiation

Assessment

Quiz

Mathematics

University

Hard

Created by

Nurul Azmi

Used 163+ times

FREE Resource

7 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the first order partial derivative with respect to y
 f(x,y)=x3y2+3xeyf(x,y)=x^3y^2+3xe^y  
.

 fy(x,y)=3x2y2+3eyf_y(x,y)=3x^2y^2+3e^y  

 fy(x,y)=3x2y2+2x3y+3ey+3xeyf_y(x,y)=3x^2y^2+2x^3y+3e^y+3xe^y  

 fy(x,y)=2x3y+3xeyf_y(x,y)=2x^3y+3xe^y  

 fy(x,y)=6x2+3eyf_y(x,y)=6x^2+3e^y  

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the second order partial derivatives of   f(x,y)=(3x+2y)4f(x,y)=(3x+2y)^4  

 fxx(x,y)=12(3x+2y)2 ,  fyy(x,y)=24(3x+2y)2f_{xx}(x,y)=12(3x+2y)^2\ ,\ \ f_{yy}(x,y)=24(3x+2y)^2  

 fxx(x,y)=36(3x+2y)2  ,  fyy(x,y)=8(3x+2y)3f_{xx}(x,y)=36(3x+2y)^2\ \ ,\ \ f_{yy}(x,y)=8(3x+2y)^3  

 fxx(x,y)=24(3x+2y)2  ,  fxy(x,y)=32(3x+2y)f_{xx}(x,y)=24(3x+2y)^2\ \ ,\ \ f_{xy}(x,y)=32(3x+2y)  

 fxx(x,y)=108(3x+2y)2  ,  fyy(x,y)=48(3x+2y)2f_{xx}(x,y)=108(3x+2y)^2\ \ ,\ \ f_{yy}(x,y)=48(3x+2y)^2  

3.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

 What is the mixed, second order partial derivative of this function.  f(x,y)=2x2+y2f\left(x,y\right)=\sqrt{2x^2+y^2} 

 fxx(x,y)=2(2x2+y2)124x2(2x2+y2)32f_{xx}(x,y)=2(2x^2+y^2)^{-\frac{1}{2}}-4x^2(2x^2+y^2)^{-\frac{3}{2}}  

 fxy(x,y)=2xy(2x2+y2)32fxy(x,y)=-2xy\left(2x^2+y^2\right)^{-\frac{3}{2}}  

 fyy(x,y)=(2x2+y2)12y2(2x2+y2)32f_{yy}(x,y)=(2x^2+y^2)^{-\frac{1}{2}}-y^2(2x^2+y^2)^{-\frac{3}{2}} 

 fxy(x,y)=4x2(2x2+y2)32f_{xy}(x,y)=-4x^2(2x^2+y^2)^{-\frac{3}{2}}  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

if  f(x,y)=x32xy+xy3+3y2f(x,y)=x^3-2xy+xy^3+3y^2  which of the following is true?

 fx(x,y)=3x22y+y3f_x(x,y)=3x^2-2y+y^3   fy(x,y)=2x+6y+3xy2f_y(x,y)=-2x+6y+3xy^2   fxy(x,y)=6xf_{xy}(x,y)=6x  

 fx(x,y)=2x+6y+3xy2f_x(x,y)=-2x+6y+3xy^2   fy(x,y)=3x22y+y3f_y(x,y)=3x^2-2y+y^3   fxy(x,y)=2+3y2f_{xy}(x,y)=-2+3y^2  

 fxx(x,y)=6xf_{xx}(x,y)=6x   fyy(x,y)=6+6xyf_{yy}(x,y)=6+6xy  
 fxy(x,y)=2+3y2f_{xy}(x,y)=-2+3y^2  

 fxx(x,y)=6+6xyf_{xx}(x,y)=6+6xy   fyy(x,y)=6xf_{yy}(x,y)=6x  
 fxy(x,y)=2+3y2f_{xy}(x,y)=-2+3y^2  

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find  fxf_x  and  fyf_y  from the equation  f(x,y)= ln(x2y3)f\left(x,y\right)=\ \ln\left(\sqrt{x^2y^3}\right)  

 fx=1x       fy=32yf_x=\frac{1}{x}\ \ \ \ \ \ \ f_y=\frac{3}{2y}  

 fx=1xy       fy=3x2yf_x=\frac{1}{xy}\ \ \ \ \ \ \ f_y=\frac{3x}{2y}  

 fx=1x        fy=3x2f_x=\frac{1}{x}\ \ \ \ \ \ \ \ f_y=\frac{3x}{2}  

 fx=x2y3     fy=3x22y3f_x=\frac{x^2}{y^3}\ \ \ \ \ f_y=\frac{3x^2}{2y^3}  

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the Partial derivative of f with respect to y for  f(x,y)=y2x+yf\left(x,y\right)=\frac{y^2}{x+y}  

 2x+y(x+y)2\frac{2x+y}{\left(x+y\right)^2}  

 2xy+y2(x+y)2\frac{2xy+y^2}{\left(x+y\right)^2}  

 2(x+y)\frac{2}{\left(x+y\right)^{ }}  

 2x2+y2(x+y)2\frac{2x^2+y^2}{\left(x+y\right)^2}  

7.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Find  zx\frac{\partial z}{\partial x}  for  z=x2y2exyz=x^2y^2e^{xy}  

 xy2exy(xy+2)xy^2e^{xy}\left(xy+2\right)  

 xyexy(xy+2)xye^{xy}\left(xy+2\right)  

 x2y2exy(xy+1)x^2y^2e^{xy}\left(xy+1\right)  

 2xy2exy(xy+1)2xy^2e^{xy}\left(xy+1\right)  

Discover more resources for Mathematics