Partial Differentiation

Partial Differentiation

University

7 Qs

quiz-placeholder

Similar activities

1.1 SIMPLIFY BASIC ALGEBRA

1.1 SIMPLIFY BASIC ALGEBRA

University

10 Qs

Moving Average

Moving Average

University

11 Qs

PENGETAHUAN UMUM

PENGETAHUAN UMUM

University

10 Qs

Trigonometric 5.1

Trigonometric 5.1

University

10 Qs

Función exponencial y logarítmica

Función exponencial y logarítmica

University

10 Qs

تركيب دالتين

تركيب دالتين

KG - University

10 Qs

Funciones

Funciones

10th Grade - University

12 Qs

Lecture 7 - Double Pipe Heat Exchanger

Lecture 7 - Double Pipe Heat Exchanger

University

10 Qs

Partial Differentiation

Partial Differentiation

Assessment

Quiz

Mathematics

University

Practice Problem

Hard

Created by

Nurul Azmi

Used 164+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

7 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the first order partial derivative with respect to y
 f(x,y)=x3y2+3xeyf(x,y)=x^3y^2+3xe^y  
.

 fy(x,y)=3x2y2+3eyf_y(x,y)=3x^2y^2+3e^y  

 fy(x,y)=3x2y2+2x3y+3ey+3xeyf_y(x,y)=3x^2y^2+2x^3y+3e^y+3xe^y  

 fy(x,y)=2x3y+3xeyf_y(x,y)=2x^3y+3xe^y  

 fy(x,y)=6x2+3eyf_y(x,y)=6x^2+3e^y  

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the second order partial derivatives of   f(x,y)=(3x+2y)4f(x,y)=(3x+2y)^4  

 fxx(x,y)=12(3x+2y)2 ,  fyy(x,y)=24(3x+2y)2f_{xx}(x,y)=12(3x+2y)^2\ ,\ \ f_{yy}(x,y)=24(3x+2y)^2  

 fxx(x,y)=36(3x+2y)2  ,  fyy(x,y)=8(3x+2y)3f_{xx}(x,y)=36(3x+2y)^2\ \ ,\ \ f_{yy}(x,y)=8(3x+2y)^3  

 fxx(x,y)=24(3x+2y)2  ,  fxy(x,y)=32(3x+2y)f_{xx}(x,y)=24(3x+2y)^2\ \ ,\ \ f_{xy}(x,y)=32(3x+2y)  

 fxx(x,y)=108(3x+2y)2  ,  fyy(x,y)=48(3x+2y)2f_{xx}(x,y)=108(3x+2y)^2\ \ ,\ \ f_{yy}(x,y)=48(3x+2y)^2  

3.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

 What is the mixed, second order partial derivative of this function.  f(x,y)=2x2+y2f\left(x,y\right)=\sqrt{2x^2+y^2} 

 fxx(x,y)=2(2x2+y2)124x2(2x2+y2)32f_{xx}(x,y)=2(2x^2+y^2)^{-\frac{1}{2}}-4x^2(2x^2+y^2)^{-\frac{3}{2}}  

 fxy(x,y)=2xy(2x2+y2)32fxy(x,y)=-2xy\left(2x^2+y^2\right)^{-\frac{3}{2}}  

 fyy(x,y)=(2x2+y2)12y2(2x2+y2)32f_{yy}(x,y)=(2x^2+y^2)^{-\frac{1}{2}}-y^2(2x^2+y^2)^{-\frac{3}{2}} 

 fxy(x,y)=4x2(2x2+y2)32f_{xy}(x,y)=-4x^2(2x^2+y^2)^{-\frac{3}{2}}  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

if  f(x,y)=x32xy+xy3+3y2f(x,y)=x^3-2xy+xy^3+3y^2  which of the following is true?

 fx(x,y)=3x22y+y3f_x(x,y)=3x^2-2y+y^3   fy(x,y)=2x+6y+3xy2f_y(x,y)=-2x+6y+3xy^2   fxy(x,y)=6xf_{xy}(x,y)=6x  

 fx(x,y)=2x+6y+3xy2f_x(x,y)=-2x+6y+3xy^2   fy(x,y)=3x22y+y3f_y(x,y)=3x^2-2y+y^3   fxy(x,y)=2+3y2f_{xy}(x,y)=-2+3y^2  

 fxx(x,y)=6xf_{xx}(x,y)=6x   fyy(x,y)=6+6xyf_{yy}(x,y)=6+6xy  
 fxy(x,y)=2+3y2f_{xy}(x,y)=-2+3y^2  

 fxx(x,y)=6+6xyf_{xx}(x,y)=6+6xy   fyy(x,y)=6xf_{yy}(x,y)=6x  
 fxy(x,y)=2+3y2f_{xy}(x,y)=-2+3y^2  

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find  fxf_x  and  fyf_y  from the equation  f(x,y)= ln(x2y3)f\left(x,y\right)=\ \ln\left(\sqrt{x^2y^3}\right)  

 fx=1x       fy=32yf_x=\frac{1}{x}\ \ \ \ \ \ \ f_y=\frac{3}{2y}  

 fx=1xy       fy=3x2yf_x=\frac{1}{xy}\ \ \ \ \ \ \ f_y=\frac{3x}{2y}  

 fx=1x        fy=3x2f_x=\frac{1}{x}\ \ \ \ \ \ \ \ f_y=\frac{3x}{2}  

 fx=x2y3     fy=3x22y3f_x=\frac{x^2}{y^3}\ \ \ \ \ f_y=\frac{3x^2}{2y^3}  

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the Partial derivative of f with respect to y for  f(x,y)=y2x+yf\left(x,y\right)=\frac{y^2}{x+y}  

 2x+y(x+y)2\frac{2x+y}{\left(x+y\right)^2}  

 2xy+y2(x+y)2\frac{2xy+y^2}{\left(x+y\right)^2}  

 2(x+y)\frac{2}{\left(x+y\right)^{ }}  

 2x2+y2(x+y)2\frac{2x^2+y^2}{\left(x+y\right)^2}  

7.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Find  zx\frac{\partial z}{\partial x}  for  z=x2y2exyz=x^2y^2e^{xy}  

 xy2exy(xy+2)xy^2e^{xy}\left(xy+2\right)  

 xyexy(xy+2)xye^{xy}\left(xy+2\right)  

 x2y2exy(xy+1)x^2y^2e^{xy}\left(xy+1\right)  

 2xy2exy(xy+1)2xy^2e^{xy}\left(xy+1\right)