
Lesson 4.1 Checkpoint
Quiz
•
Mathematics
•
11th - 12th Grade
•
Practice Problem
•
Hard
Krysten Martinez
Used 24+ times
FREE Resource
Enhance your content in a minute
6 questions
Show all answers
1.
MULTIPLE CHOICE QUESTION
5 mins • 1 pt
Suppose a married man and woman both carry a gene for cystic fibrosis but don’t have the disease themselves. According to the laws of genetics, the probability that any child they have will develop cystic fibrosis is 0.25.
Explain what this probability means.
(LT 4.1.1 #1)
If you take a very large random sample of children whose parents both carry the gene for cystic fibrosis but don’t have the disease themselves, about 25% of the children will develop cystic fibrosis.
If you take a very large random sample of children whose parents both carry the gene for cystic fibrosis but don’t have the disease themselves, about 0.25% of the children will develop cystic fibrosis.
About 25% of children will develop cystic fibrosis.
Exactly 0.25% of children will develop cystic fibrosis.
2.
MULTIPLE CHOICE QUESTION
5 mins • 1 pt
Suppose a married man and woman both carry a gene for cystic fibrosis but don’t have the disease themselves. According to the laws of genetics, the probability that any child they have will develop cystic fibrosis is 0.25.
If the couple has 4 children, is one of them guaranteed to get cystic fibrosis? Explain.
(LT 4.1.1 #2)
No; probability describes what happens in many, many repetitions (way more than 4) of a chance process. We would expect to get about 1 child who develops cystic fibrosis in a random sample of 4 children, but this result is not guaranteed.
Yes; probability describes what happens in many, many repetitions of a chance process. We would expect to get about 1 child who develops cystic fibrosis in a random sample of 4 children, but this result is not guaranteed.
No; probability describes what happens in many, many repetitions (way more than 4) of a chance process. We would expect to get exactly 1 child who develops cystic fibrosis in a random sample of 4 children, and this result is guaranteed.
Yes; probability describes what happens in many, many repetitions (way more than 4) of a chance process. We would expect to get exactly 1 child who develops cystic fibrosis in a random sample of 4 children, and this result is guaranteed.
3.
MULTIPLE CHOICE QUESTION
5 mins • 1 pt
A very good professional baseball player gets a hit about 35% of the time over an entire season. After the player failed to hit safely in six straight at-bats, a TV commentator said, “He is due for a hit by the law of averages.” Explain why the commentator is wrong.
(LT 4.1.2 #1)
The commentator’s claim is based on the erroneous “law of averages.” Even after the player failed to hit safely in six straight at-bats, he will continue to have the same 35% chance of getting a hit on the next at-bat.
The commentator’s claim is based on the erroneous “law of large numbers.” Even after the player failed to hit safely in six straight at-bats, he will continue to have the same 35% chance of getting a hit on the next at-bat.
The commentator’s claim is based on the erroneous “law of averages.” Even after the player failed to hit safely in six straight at-bats, he will higher chance of getting a hit on the next at-bat.
The commentator’s claim is based on the erroneous “law of large numbers.” Even after the player failed to hit safely in six straight at-bats, he will have a higher chance than 35% chance of getting a hit on the next at-bat.
4.
MULTIPLE CHOICE QUESTION
5 mins • 1 pt
Imagine tossing a coin 6 times and recording heads (H) or tails (T) on each toss. Which of the following outcomes is more likely: HTHTTH or TTTHHH? Justify your answer.
(LT 4.1.2 #2)
They are equally likely, because any sequence of six tosses is 1/64.
They are not equally likely, because any sequence of six tosses is 1/64.
They are equally likely, because any sequence of six tosses is 1/2.
They are not equally likely, because any sequence of six tosses is 1/2.
5.
MULTIPLE CHOICE QUESTION
5 mins • 1 pt
A randomly selected U.S. adult male has probability about 0.07 of having some form of red–green color blindness. Suppose we choose 4 U.S. adult males at random. What’s the probability that at least one of them is red–green color-blind? Design and carry out a simulation to help answer this question.
What is the State part to this simulation?
(LT 4.1.3 #1)
What is the probability that at least 1 of 4 randomly selected adult males is red-green color-blind (assuming the probability of having some form of red-green color-blindness is 0.07)?
Let 127 5 adult male has red- green color-blindness and 82100 5 adult male does not have red-green color-blindness. Use randInt(1,100,4) to simulate taking a random sample of 4 adult males. Record the number of adult males in the sample of 4 who have red- green color-blindness.
In 50 repetitions, there was at least 1 color-blind adult male 12 times. Assuming the probability of having some form of red-green color-blindness is 0.07, the estimated probability that at least 1 of 4 randomly selected adult males is red-green color-blind is approximately 12/50 5 24%.
6.
MULTIPLE CHOICE QUESTION
5 mins • 1 pt
A randomly selected U.S. adult male has probability about 0.07 of having some form of red–green color blindness. Suppose we choose 4 U.S. adult males at random. What’s the probability that at least one of them is red–green color-blind? Design and carry out a simulation to help answer this question.
What is the Conclude part to this simulation?
(LT 4.1.3 #2)
What is the probability that at least 1 of 4 randomly selected adult males is red-green color-blind (assuming the probability of having some form of red-green color-blindness is 0.07)?
Let 127 5 adult male has red- green color-blindness and 82100 5 adult male does not have red-green color-blindness. Use randInt(1,100,4) to simulate taking a random sample of 4 adult males. Record the number of adult males in the sample of 4 who have red- green color-blindness.
In 50 repetitions, there was at least 1 color-blind adult male 12 times. Assuming the probability of having some form of red-green color-blindness is 0.07, the estimated probability that at least 1 of 4 randomly selected adult males is red-green color-blind is approximately 12/50 5 24%.
Access all questions and much more by creating a free account
Create resources
Host any resource
Get auto-graded reports

Continue with Google

Continue with Email

Continue with Classlink

Continue with Clever
or continue with

Microsoft
%20(1).png)
Apple
Others
Already have an account?
Similar Resources on Wayground
10 questions
Find derivative and gradient of a tangent
Quiz
•
12th Grade
10 questions
Geometric Vectors - Y11 MATHS
Quiz
•
11th Grade
10 questions
BOOKS OF PRIME ENTRY_ JOURNAL
Quiz
•
9th - 12th Grade
10 questions
Rational vs. Irrational Numbers
Quiz
•
8th - 12th Grade
10 questions
HOMEWORK Tangent & Cotangent transformed graphs
Quiz
•
11th Grade
10 questions
Ch 1 Introduction (Statistics)Class 11 Economics
Quiz
•
11th - 12th Grade
10 questions
Circle
Quiz
•
11th Grade
10 questions
7.2 The Cosine Law
Quiz
•
12th Grade
Popular Resources on Wayground
15 questions
Fractions on a Number Line
Quiz
•
3rd Grade
20 questions
Equivalent Fractions
Quiz
•
3rd Grade
25 questions
Multiplication Facts
Quiz
•
5th Grade
54 questions
Analyzing Line Graphs & Tables
Quiz
•
4th Grade
22 questions
fractions
Quiz
•
3rd Grade
20 questions
Main Idea and Details
Quiz
•
5th Grade
20 questions
Context Clues
Quiz
•
6th Grade
15 questions
Equivalent Fractions
Quiz
•
4th Grade
Discover more resources for Mathematics
12 questions
Add and Subtract Polynomials
Quiz
•
9th - 12th Grade
15 questions
Exponential Growth and Decay Word Problems Practice
Quiz
•
9th - 12th Grade
20 questions
Classifying Polynomials by Degree and Number of Terms
Quiz
•
11th Grade
17 questions
Explore Experimental and Theoretical Probability
Quiz
•
7th - 12th Grade
15 questions
Parallelogram Properties
Quiz
•
10th - 12th Grade
10 questions
Special Right Triangles
Quiz
•
11th Grade
18 questions
Solving Systems- Word Problems
Quiz
•
9th - 12th Grade
34 questions
7.4 Review Cubic and Cube Root Functions
Quiz
•
10th - 12th Grade
