Conul circular drept - formule pentru arii şi volum

Conul circular drept - formule pentru arii şi volum

8th Grade

20 Qs

quiz-placeholder

Similar activities

Tin học 8 - CĐ5

Tin học 8 - CĐ5

1st - 10th Grade

21 Qs

เครื่องกลึง

เครื่องกลึง

8th Grade

20 Qs

General Knowledge

General Knowledge

6th - 12th Grade

15 Qs

MAPEH 8A - SECOND QUARTER

MAPEH 8A - SECOND QUARTER

8th - 10th Grade

15 Qs

Abbreviations and Equivalents Review

Abbreviations and Equivalents Review

8th Grade

20 Qs

Test Mandiri Kelas 6 A B C D E Hari Rabu 29 April 2020

Test Mandiri Kelas 6 A B C D E Hari Rabu 29 April 2020

6th - 12th Grade

20 Qs

Middle School Quiz Bowl

Middle School Quiz Bowl

8th Grade

20 Qs

Unitatea centrala

Unitatea centrala

5th - 9th Grade

21 Qs

Conul circular drept - formule pentru arii şi volum

Conul circular drept - formule pentru arii şi volum

Assessment

Quiz

Other, Other

8th Grade

Practice Problem

Medium

Created by

Boldea Daniela

Used 4+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

Aria laterală a unei piramide regulate drepte se determină cu formula

Al=Pbapot. piramida˘2=Pbap2A_l=\frac{P_b\cdot apot.\ piramidă}{2}=\frac{P_b\cdot a_p}{2}

Al=Pbapot. piramida˘=PbapA_l=P_b\cdot apot.\ piramidă=P_b\cdot a_p

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

Aria totală a piramidei regulate drepte se calculează cu formula

Atotala˘=Alaterala˘+2Abaza˘A_{totală}=A_{laterală}+2\cdot A_{bază}

Atotala˘=Alaterala˘ + Abaza˘A_{totală}=A_{laterală}\ +\ A_{bază}

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

Volumul unei piramide regulate drepte se determină cu formula

V=Abaza˘ hpiramida˘V=A_{bază\ }\cdot h_{piramidă}

V=Abaza˘ hpiramida˘3V=\frac{A_{bază\ }\cdot h_{piramidă}}{3}

4.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Media Image

Deoarece un cerc poate fi aproximat cu un poligon regulat care are un număr mare de laturi, formulele pentru ariile şi volumul piramidei regulate drepte pot fi folosite şi la ariile şi volumul conului.
 Astfel, aria laterală a conului se determină cu formula

 Al=Pbap2=LcG2=πRGA_l=\frac{P_b\cdot a_p}{2}=\frac{L_c\cdot G}{2}=\pi RG 

 Al=Pbh=LcercG=2πRGA_l=P_b\cdot h=L_{cerc}\cdot G=2\pi RG 

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Media Image

Aria totală a conului se determină cu formula

At=Al+2Ab=πRG+2πR2A_t=A_l+2A_b=\pi RG+2\pi R^2

At=Al+Ab=πRG+πR2A_t=A_l+A_b=\pi RG+\pi R^2

6.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Media Image

Volumul unui con se determină cu formula

V=Abhcon3=πR2hcon3V=\frac{A_b\cdot h_{con}}{3}=\frac{\pi R^2\cdot h_{con}}{3}

V=Pbazeihcon3=2πRhcon3V=\frac{P_{bazei}\cdot h_{con}}{3}=\frac{2\pi R\cdot h_{con}}{3}

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Media Image

Axa de simetrie a conului este înălţimea VO. Secţiunea axială este triunghiul isoscel VAB. 
Dacă R =3 cm, VO = 4 cm, atunci aria secţiunii axiale VAB se determină cu formula

AΔVAB=bh2=ABVO2=6cm2A_{\Delta VAB}=\frac{b\cdot h}{2}=\frac{AB\cdot VO}{2}=6cm^2

AΔVAB=bh2=ABVO2=12cm2A_{\Delta VAB}=\frac{b\cdot h}{2}=\frac{AB\cdot VO}{2}=12cm^2

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?