Search Header Logo

Second Order Linear Differential Equations

Authored by MUNIRAH ARIFFIN

Mathematics

University

Used 180+ times

Second Order Linear Differential Equations
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

What is the general solution to the DE d2xdy2+7dxdy8y=0\frac{\text{d}^2x}{\text{d}y^2}+7\frac{\text{d}x}{\text{d}y}-8y=0  ?

 y=Cex+De8xy=Ce^{-x}+De^{8x}  

 y=Cex+De8xy=Ce^x+De^{-8x}  

 y=Cex+De7xy=Ce^x+De^{7x}  

 y=Cex+De7xy=Ce^{-x}+De^{7x}  

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 d2xdy2+6dxdy5y=0 \frac{\text{d}^2x}{\text{d}y^2}+6\frac{\text{d}x}{\text{d}y}-5y=0\   

The general solution to the DE is,

 y=Aex+Be5xy=Ae^x+Be^{5x}  

 y=Aex+Be5xy=Ae^{-x}+Be^{-5x}  

 y=Ae(3+14)x+Be(314)xy=Ae^{\left(-3+\sqrt{14}\right)x}+Be^{\left(-3-\sqrt{14}\right)x}  

 y=Acos(3+14)x+Bsin(314)xy=A\cos\left(-3+\sqrt{14}\right)x+B\sin\left(-3-\sqrt{14}\right)x  

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

The roots of the auxiliary equation 
 dxdy+16y=0\frac{\text{d}x}{\text{d}y}+16y=0  is

 y=Acos16x+Bsin16xy=A\cos16x+B\sin16x  

 y=A+Be16xy=A+Be^{-16x}  

 y=Acos4x+Bsin4xy=A\cos4x+B\sin4x  

 y=Ae4x+Be4xy=Ae^{4x}+Be^{-4x}  

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

The general solution of the DE
 d2xdy2+4dxdy5y=0\frac{\text{d}^2x}{\text{d}y^2}+4\frac{\text{d}x}{\text{d}y}-5y=0  is

 y=Aex+Be5xy=Ae^x+Be^{-5x}  

 y=Aex+Be5xy=Ae^{-x}+Be^{5x}  

 y=Aex+Be5xy=Ae^x+Be^{5x}  

 y=Aex+Be5xy=Ae^{-x}+Be^{-5x}  

5.

MULTIPLE SELECT QUESTION

1 min • 1 pt

 d2xdy2+4dxdy6y=0\frac{\text{d}^2x}{\text{d}y^2}+4\frac{\text{d}x}{\text{d}y}-6y=0  

Which of the following options are TRUE about the above DE?

The roots of the auxiliary equations are two complex roots.

The auxiliary equation has two different roots.

The auxiliary equation has two equal roots.

The equation is homogeneous.

6.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

The initial guess for f(x)4cos3x+2x2f\left(x\right)-4\cos3x+2x^2  

 yp=(Ccos3x+Fx2)y_p=\left(C\cos3x+Fx^2\right)  

 yp=(Ccos3x+Dsin3x+Fx2+Gx+H)y_p=\left(C\cos3x+D\sin3x+Fx^2+Gx+H\right)  

 yp=(Ccos3x+Dsin3x+Fx2)y_p=\left(C\cos3x+D\sin3x+Fx^2\right)  

 yp=(Ccos3xDsin3x+Fx2+G)y_p=\left(C\cos3x-D\sin3x+Fx^2+G\right)  

7.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Given  d2xdy2+4dxdy+3y=2ex.\frac{\text{d}^2x}{\text{d}y^2}+4\frac{\text{d}x}{\text{d}y}+3y=2e^{-x}.  

The correct  ypy_p  is

 CexCe^{-x}  

 Ccosx+DsinxC\cos x+D\sin x  

 CexCe^x  

 CxexCxe^{-x}  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?