31. infinite series - comparison tests

31. infinite series - comparison tests

11th Grade - University

10 Qs

quiz-placeholder

Similar activities

giới hạn dãy số

giới hạn dãy số

11th Grade

12 Qs

Basic Taylor Series

Basic Taylor Series

11th - 12th Grade

12 Qs

Testing Series for Convergence/Divergence

Testing Series for Convergence/Divergence

11th Grade - University

10 Qs

Integrals in Summation Notation

Integrals in Summation Notation

11th Grade - University

13 Qs

BC Calculus - Series Assessment

BC Calculus - Series Assessment

10th - 12th Grade

10 Qs

Parsevals Identity

Parsevals Identity

University

10 Qs

Chuỗi số dương

Chuỗi số dương

University

10 Qs

Series Tests

Series Tests

11th - 12th Grade

10 Qs

31. infinite series - comparison tests

31. infinite series - comparison tests

Assessment

Quiz

Mathematics

11th Grade - University

Medium

Created by

Devra Ramsey

Used 63+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

the convergence or divergence of n=1 2n24\sum_{n=1}^{\infty}\ \frac{2}{n^2-4} can be determined by  

Direct Comparison to  n=1 2n2\sum_{n=1}^{\infty}\ \frac{2}{n^2}  

Limit Comparison to n=1 1n+2\sum_{n=1}^{\infty}\ \frac{1}{n+2}  

Limit Comparison to  n=1 2n2\sum_{n=1}^{\infty}\ \frac{2}{n^2}  

Direct Comparison to the Harmonic Series

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 n=1 1n(n+1)\sum_{n=1}^{\infty}\ \frac{1}{n\left(n+1\right)}  

diverges by Direct Comparison to the Harmonic Series 

converges by Direct Comparison to  n=1 1n\sum_{n=1}^{\infty}\ \frac{1}{n}  

converges by Direct Comparison to  n=1 1n2\sum_{n=1}^{\infty}\ \frac{1}{n^2} 

diverges by Limit Comparison to  n=1 1n2\sum_{n=1}^{\infty}\ \frac{1}{n^2} 

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 n=1 12n1\sum_{n=1}^{\infty}\ \frac{1}{2n-1}  diverges by

Direct Comparison to the Harmonic Series

it is the Harmonic Series

Limit Comparison to  n=1 1n2\sum_{n=1}^{\infty}\ \frac{1}{n^2}  yields  \infty  

Direct Comparison to a Geometric Series where  r=2\left|r\right|=2  

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

convergence or divergence for  n=1 3n+52n1\sum_{n=1}^{\infty}\ \frac{3^n+5}{2^n-1}  can be determined by 

Limit Comparison to  n=1(32)n\sum_{n=1}^{\infty}\left(\frac{3}{2}\right)^n  

Direct Comparison to  n=1 12n\sum_{n=1}^{\infty}\ \frac{1}{2^n}  

GST since  r=5\left|r\right|=5  

p-series test since  p=32p=\frac{3}{2}  

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 n=1 n2+1n42n2+1\sum_{n=1}^{\infty}\ \frac{n^2+1}{n^4-2n^2+1}  converges because

 limn n2+1n42n2+1=0\lim_{n\rightarrow\infty}\ \frac{n^2+1}{n^4-2n^2+1}=0  

 limn n4+n2n42n2+1=1\lim_{n\rightarrow\infty}\ \frac{n^4+n^2}{n^4-2n^2+1}=1  

 limn n2+1n42n2+1\lim_{n\rightarrow\infty}\ \frac{n^2+1}{n^4-2n^2+1}  is finite and positive

it's a p-series with  p=4p=4  

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

which test is right for determining the convergence or divergence of  \sum_{n=1}^{\infty}\ \frac{3}{n+4} 

Direct Comparison to  n=1 1n\sum_{n=1}^{\infty}\ \frac{1}{n}  

Direct Comparison to  n=1 1n2\sum_{n=1}^{\infty}\ \frac{1}{n^2}  

Limit Comparison to  \sum_{n=1}^{\infty}\ \frac{1}{n}  

GST where  r=34r=\frac{3}{4}  

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

the convergence of  n=1 25n+1\sum_{n=1}^{\infty}\ \frac{2}{5^n+1} can be proven with the comparison series:  

 n=1(15)n\sum_{n=1}^{\infty}\left(\frac{1}{5}\right)^n  

 n=1(25)n\sum_{n=1}^{\infty}\left(\frac{2}{5}\right)^n  

 n=1 5n\sum_{n=1}^{\infty}\ 5^n  

the Harmonic Series

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?