31. infinite series - comparison tests

31. infinite series - comparison tests

11th Grade - University

10 Qs

quiz-placeholder

Similar activities

greater than less than equal to

greater than less than equal to

Compare and Contrast

Compare and Contrast

Greater than, Less than and Equal to

Greater than, Less than and Equal to

Different Animals

Different Animals

Cost Comparison

Cost Comparison

animal quiz

animal quiz

Comparing Numbers

Comparing Numbers

Compare Numbers 1

Compare Numbers 1

31. infinite series - comparison tests

31. infinite series - comparison tests

Assessment

Quiz

Mathematics

11th Grade - University

Practice Problem

Medium

Created by

Devra Ramsey

Used 63+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

the convergence or divergence of n=1 2n24\sum_{n=1}^{\infty}\ \frac{2}{n^2-4} can be determined by  

Direct Comparison to  n=1 2n2\sum_{n=1}^{\infty}\ \frac{2}{n^2}  

Limit Comparison to n=1 1n+2\sum_{n=1}^{\infty}\ \frac{1}{n+2}  

Limit Comparison to  n=1 2n2\sum_{n=1}^{\infty}\ \frac{2}{n^2}  

Direct Comparison to the Harmonic Series

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 n=1 1n(n+1)\sum_{n=1}^{\infty}\ \frac{1}{n\left(n+1\right)}  

diverges by Direct Comparison to the Harmonic Series 

converges by Direct Comparison to  n=1 1n\sum_{n=1}^{\infty}\ \frac{1}{n}  

converges by Direct Comparison to  n=1 1n2\sum_{n=1}^{\infty}\ \frac{1}{n^2} 

diverges by Limit Comparison to  n=1 1n2\sum_{n=1}^{\infty}\ \frac{1}{n^2} 

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 n=1 12n1\sum_{n=1}^{\infty}\ \frac{1}{2n-1}  diverges by

Direct Comparison to the Harmonic Series

it is the Harmonic Series

Limit Comparison to  n=1 1n2\sum_{n=1}^{\infty}\ \frac{1}{n^2}  yields  \infty  

Direct Comparison to a Geometric Series where  r=2\left|r\right|=2  

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

convergence or divergence for  n=1 3n+52n1\sum_{n=1}^{\infty}\ \frac{3^n+5}{2^n-1}  can be determined by 

Limit Comparison to  n=1(32)n\sum_{n=1}^{\infty}\left(\frac{3}{2}\right)^n  

Direct Comparison to  n=1 12n\sum_{n=1}^{\infty}\ \frac{1}{2^n}  

GST since  r=5\left|r\right|=5  

p-series test since  p=32p=\frac{3}{2}  

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 n=1 n2+1n42n2+1\sum_{n=1}^{\infty}\ \frac{n^2+1}{n^4-2n^2+1}  converges because

 limn n2+1n42n2+1=0\lim_{n\rightarrow\infty}\ \frac{n^2+1}{n^4-2n^2+1}=0  

 limn n4+n2n42n2+1=1\lim_{n\rightarrow\infty}\ \frac{n^4+n^2}{n^4-2n^2+1}=1  

 limn n2+1n42n2+1\lim_{n\rightarrow\infty}\ \frac{n^2+1}{n^4-2n^2+1}  is finite and positive

it's a p-series with  p=4p=4  

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

which test is right for determining the convergence or divergence of  \sum_{n=1}^{\infty}\ \frac{3}{n+4} 

Direct Comparison to  n=1 1n\sum_{n=1}^{\infty}\ \frac{1}{n}  

Direct Comparison to  n=1 1n2\sum_{n=1}^{\infty}\ \frac{1}{n^2}  

Limit Comparison to  \sum_{n=1}^{\infty}\ \frac{1}{n}  

GST where  r=34r=\frac{3}{4}  

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

the convergence of  n=1 25n+1\sum_{n=1}^{\infty}\ \frac{2}{5^n+1} can be proven with the comparison series:  

 n=1(15)n\sum_{n=1}^{\infty}\left(\frac{1}{5}\right)^n  

 n=1(25)n\sum_{n=1}^{\infty}\left(\frac{2}{5}\right)^n  

 n=1 5n\sum_{n=1}^{\infty}\ 5^n  

the Harmonic Series

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?