Círculo Unitario

Círculo Unitario

9th Grade - University

15 Qs

quiz-placeholder

Similar activities

Latihan Soal "Proyeksi Vektor"

Latihan Soal "Proyeksi Vektor"

11th Grade

20 Qs

All quadrants

All quadrants

10th - 12th Grade

20 Qs

Quadratic Formula

Quadratic Formula

9th - 11th Grade

10 Qs

Factoring Review

Factoring Review

10th - 12th Grade

13 Qs

PAS Ganjil Matematika Kelas 9

PAS Ganjil Matematika Kelas 9

9th Grade

20 Qs

Pangkat, Akar dan Logaritma

Pangkat, Akar dan Logaritma

10th Grade

20 Qs

HW 1: Distance and Midpoint Formulas

HW 1: Distance and Midpoint Formulas

11th Grade

11 Qs

Inverse Trigonometry Class XII

Inverse Trigonometry Class XII

12th Grade

10 Qs

Círculo Unitario

Círculo Unitario

Assessment

Quiz

Mathematics

9th Grade - University

Hard

CCSS
HSF.TF.A.2, HSF.IF.A.1, 7.G.B.4

Standards-aligned

Created by

Tatiana De La Paz

Used 91+ times

FREE Resource

15 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Demuestra que el punto p  (33,63)\left(\frac{\sqrt{3}}{3},\frac{\sqrt{6}}{3}\right)  se encuentra en la circunferencia unitaria,

SI

NO

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Demuestra que el punto p    (35, 45)\left(\frac{-3}{5},\ \frac{-4}{5}\right)  se encuentra en la circunferencia unitaria,

SI

NO

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 Demuestra que el punto p(12, 18)\left(\frac{-1}{2},\ \frac{1}{8}\right)    se encuentra en la circunferencia unitaria,

SI

NO

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Demuestra que el punto p  (23,13)\left(\frac{-2}{3},\frac{1}{3}\right)  se encuentra en la circunferencia unitaria.

SI

NO

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

  Demuestra que el punto p (34,74)\left(\frac{-3}{4},\frac{\sqrt{7}}{4}\right)   se encuentra en la circunferencia unitaria.

SI

NO

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Determina el punto terminal de: t=π2t=\frac{\pi}{2} 

(0,1)

(1,0)

(-1,0)

(0,-1)

Tags

CCSS.HSF.TF.A.2

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Determina el punto terminal de:  t=π4t=\frac{\pi}{4}  

 (12, 12)\left(\frac{1}{\sqrt{2}},\ \frac{1}{\sqrt{2}}\right)  

 (22, 22)\left(\frac{2}{\sqrt{2}},\ \frac{2}{\sqrt{2}}\right)  

 (1,0)\left(1,0\right)  

 (0,1)\left(0,1\right)  

Tags

CCSS.HSF.TF.A.2

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?