HL1 CFU 8.3

HL1 CFU 8.3

11th - 12th Grade

5 Qs

quiz-placeholder

Similar activities

SISTEM PELAYANAN USAHA 1

SISTEM PELAYANAN USAHA 1

11th Grade

10 Qs

Estilos de Liderazgo

Estilos de Liderazgo

10th Grade - University

10 Qs

Feste in Deutschland

Feste in Deutschland

1st - 11th Grade

10 Qs

MIS CONOCIMIENTOS

MIS CONOCIMIENTOS

4th Grade - University

10 Qs

Tugas kls x

Tugas kls x

12th Grade

10 Qs

MI FORMACION TURISTICA

MI FORMACION TURISTICA

9th - 11th Grade

10 Qs

APBN

APBN

11th Grade

10 Qs

Latihan teori LSP 2

Latihan teori LSP 2

12th Grade

10 Qs

HL1 CFU 8.3

HL1 CFU 8.3

Assessment

Quiz

Other

11th - 12th Grade

Medium

Created by

Lane Bacchi

Used 1+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If you are solving differential equations and have just isolated the variables, dy and dx to their respective sides, what do you do next?

Integrate both sides and then include +c to both sides.

Integrate both sides and then include +c to the x side.

Integrate both sides and then include +c to the y side.

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Determine the value of "c" that satisfies the differential equation  dydx=x+1y+2\frac{dy}{dx}=\frac{x+1}{y+2}  if the curve goes through the point (0, -1).

5/2

-3/2

-1/2

1

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Solve the differential equation for y given the initial value. 
 dydx=4xy, y(0)=1\frac{dy}{dx}=\frac{4x}{y},\ y\left(0\right)=1 

 y=4x24y=\sqrt{4x^2-4}  

 y=2x2+1y=2x^2+1  

 y=e2x2y=e^{2x^2}  

 y=4x2+1y=\sqrt{4x^2+1}  

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Find the particular solution for 
 dydx=2xy\frac{dy}{dx}=2x\sqrt{y}  given the point  (3,4)\left(3,4\right) .

 2y=x2+c2\sqrt{y}=x^2+c  

 y=(x2+25)24y=\frac{\left(x^2+25\right)^2}{4}  

 y=(x252)2y=\left(\frac{x^2-5}{2}\right)^2  

 y=x2+52y=\frac{x^2+5}{2} 

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 Find the general solution for
 dydx=2xe2y\frac{dy}{dx}=\frac{2x}{e^{2y}}  

 y=ln(x2+c)2y=\frac{\ln\left(x^2+c\right)}{2}  

 y=ln(2x2+c)y=\ln\left(2x^2+c\right)  

 y=e2x+cy=e^{2x}+c  

 y=ln(2x2+c)2y=\frac{\ln\left(2x^2+c\right)}{2}