Fourier Transform Basics-1

Fourier Transform Basics-1

University

12 Qs

quiz-placeholder

Similar activities

DIAGNOSTICO MN

DIAGNOSTICO MN

University

12 Qs

Quiz on module-03

Quiz on module-03

University

15 Qs

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS

University

7 Qs

U3: L1 and L2 Quiz

U3: L1 and L2 Quiz

11th Grade - University

10 Qs

Quiz Analisi 1

Quiz Analisi 1

12th Grade - University

16 Qs

Area bajo la curva y entre curvas

Area bajo la curva y entre curvas

University

10 Qs

Increasing and Decreasing Functions

Increasing and Decreasing Functions

12th Grade - University

10 Qs

Revision Unit 3 C

Revision Unit 3 C

University

10 Qs

Fourier Transform Basics-1

Fourier Transform Basics-1

Assessment

Quiz

Mathematics

University

Hard

Created by

Suganthi G

Used 105+ times

FREE Resource

12 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The Fourier Transform of f(x) is  F[f(x)]=F[f(x)]=  

 12πf(x) dx = F[s]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f\left(x\right)\ dx\ =\ F\left[s\right]  

 12πf(x)eisx dx = F[s]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f\left(x\right)e^{isx}\ dx\ =\ F\left[s\right]  

 12πf(x) ds = F[s]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f\left(x\right)\ ds\ =\ F\left[s\right]  

 12πf(x)  cossx dx = F[s]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f\left(x\right)\ \ \cos sx\ dx\ =\ F\left[s\right]  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The  inverse Fourier Transform of   F[f(x)] F[f(x)]\  is  f(x) =f\left(x\right)\ =   

 12π F[s] dx = f(x)\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\ F\left[s\right]\ dx\ =\ f\left(x\right)  

 12πF[s]eisx ds =f(x)\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}F\left[s\right]e^{isx}\ ds\ =f\left(x\right)  

 12πF[s] eisxds =f(x)\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}F\left[s\right]\ e^{-isx}ds\ =f\left(x\right)  

 12πF[s]  cossx ds = f(x)\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}F\left[s\right]\ \ \cos sx\ ds\ =\ f\left(x\right)  

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The complex form  eisx e^{isx\ }  and  eisxe^{-isx}   is 

 eisx  = cossx + sinsx  and eisx  = cossx  sinsx  e^{isx\ }\ =\ \cos sx\ +\ \sin sx\ \ and\ e^{-isx\ }\ =\ \cos sx\ -\ \sin sx\ \   

 eisx  = cossx +isinsx  and eisx  = cossx isinsx  e^{isx\ }\ =\ \cos sx\ +i\sin sx\ \ and\ e^{-isx\ }\ =\ \cos sx\ -i\sin sx\ \   

 eisx  = cossx  and eisx  =  sinsx  e^{isx\ }\ =\ \cos sx\ \ and\ e^{-isx\ }\ =\ \ \sin sx\ \   

None of the above

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The Real part of  e^{isx\ }  is

sinsx

i sinsx

cossx

cosx

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The Imaginary part of  e^{isx\ }  is

sinsx

i sinsx

cossx

cosx

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The Fourier sine Transform of f(x) is  Fs[f(x)]=F_s[f(x)]=  

 12πf(x) dx = Fs[s]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f\left(x\right)\ dx\ =\ F_s\left[s\right]  

 12π0f(x) sinsx dx = Fs[s]\frac{1}{\sqrt{2\pi}}\int_0^{\infty}f\left(x\right)\ \sin sx\ dx\ =\ F_s\left[s\right]  

 2π0f(x) sinsx dx = Fs[s]\sqrt{\frac{2}{\pi}}\int_0^{\infty}f\left(x\right)\ \sin sx\ dx\ =\ F_s\left[s\right]  

 12πf(x)  cossx dx = Fs[s]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f\left(x\right)\ \ \cos sx\ dx\ =\ F_s\left[s\right]  

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The inverse Fourier sine Transform of   F1{Fs[f(x)]} = f(x)F^{-1}\left\{F_s[f(x)]\right\}\ =\ f\left(x\right)  

 12πf(x) ds= Fs[s]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f\left(x\right)\ ds=\ F_s\left[s\right]  

 12π0 Fs[s]sinsx ds=f(x) \frac{1}{\sqrt{2\pi}}\int_0^{\infty}\ F_s\left[s\right]\sin sx\ ds=f\left(x\right)\   

 2π0Fs[s]sinsx ds = f(x) \sqrt{\frac{2}{\pi}}\int_0^{\infty}F_s\left[s\right]\sin sx\ ds\ =\ f\left(x\right)\   

 12π Fs[s]  cossx dx =f(x)\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\ F_s\left[s\right]\ \ \cos sx\ dx\ =f\left(x\right)  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?

Discover more resources for Mathematics