Fourier Transform Basics-1

Fourier Transform Basics-1

University

12 Qs

quiz-placeholder

Similar activities

geometri

geometri

University

10 Qs

Finding Derivatives

Finding Derivatives

University

10 Qs

ME 2

ME 2

University

15 Qs

Parametrics Quiz

Parametrics Quiz

KG - University

10 Qs

Повторення теорії ймовірностей

Повторення теорії ймовірностей

University

15 Qs

Quizziz Test Laplace and ILT

Quizziz Test Laplace and ILT

University

10 Qs

QUIZIZZ TRIGONOMETRI PENJUMLAHAN DAN PENGURANGAN X UPW 1

QUIZIZZ TRIGONOMETRI PENJUMLAHAN DAN PENGURANGAN X UPW 1

University

10 Qs

Posttest Bab Limit

Posttest Bab Limit

University

10 Qs

Fourier Transform Basics-1

Fourier Transform Basics-1

Assessment

Quiz

Mathematics

University

Practice Problem

Hard

Created by

Suganthi G

Used 108+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

12 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The Fourier Transform of f(x) is  F[f(x)]=F[f(x)]=  

 12πf(x) dx = F[s]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f\left(x\right)\ dx\ =\ F\left[s\right]  

 12πf(x)eisx dx = F[s]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f\left(x\right)e^{isx}\ dx\ =\ F\left[s\right]  

 12πf(x) ds = F[s]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f\left(x\right)\ ds\ =\ F\left[s\right]  

 12πf(x)  cossx dx = F[s]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f\left(x\right)\ \ \cos sx\ dx\ =\ F\left[s\right]  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The  inverse Fourier Transform of   F[f(x)] F[f(x)]\  is  f(x) =f\left(x\right)\ =   

 12π F[s] dx = f(x)\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\ F\left[s\right]\ dx\ =\ f\left(x\right)  

 12πF[s]eisx ds =f(x)\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}F\left[s\right]e^{isx}\ ds\ =f\left(x\right)  

 12πF[s] eisxds =f(x)\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}F\left[s\right]\ e^{-isx}ds\ =f\left(x\right)  

 12πF[s]  cossx ds = f(x)\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}F\left[s\right]\ \ \cos sx\ ds\ =\ f\left(x\right)  

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The complex form  eisx e^{isx\ }  and  eisxe^{-isx}   is 

 eisx  = cossx + sinsx  and eisx  = cossx  sinsx  e^{isx\ }\ =\ \cos sx\ +\ \sin sx\ \ and\ e^{-isx\ }\ =\ \cos sx\ -\ \sin sx\ \   

 eisx  = cossx +isinsx  and eisx  = cossx isinsx  e^{isx\ }\ =\ \cos sx\ +i\sin sx\ \ and\ e^{-isx\ }\ =\ \cos sx\ -i\sin sx\ \   

 eisx  = cossx  and eisx  =  sinsx  e^{isx\ }\ =\ \cos sx\ \ and\ e^{-isx\ }\ =\ \ \sin sx\ \   

None of the above

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The Real part of  e^{isx\ }  is

sinsx

i sinsx

cossx

cosx

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The Imaginary part of  e^{isx\ }  is

sinsx

i sinsx

cossx

cosx

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The Fourier sine Transform of f(x) is  Fs[f(x)]=F_s[f(x)]=  

 12πf(x) dx = Fs[s]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f\left(x\right)\ dx\ =\ F_s\left[s\right]  

 12π0f(x) sinsx dx = Fs[s]\frac{1}{\sqrt{2\pi}}\int_0^{\infty}f\left(x\right)\ \sin sx\ dx\ =\ F_s\left[s\right]  

 2π0f(x) sinsx dx = Fs[s]\sqrt{\frac{2}{\pi}}\int_0^{\infty}f\left(x\right)\ \sin sx\ dx\ =\ F_s\left[s\right]  

 12πf(x)  cossx dx = Fs[s]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f\left(x\right)\ \ \cos sx\ dx\ =\ F_s\left[s\right]  

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The inverse Fourier sine Transform of   F1{Fs[f(x)]} = f(x)F^{-1}\left\{F_s[f(x)]\right\}\ =\ f\left(x\right)  

 12πf(x) ds= Fs[s]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f\left(x\right)\ ds=\ F_s\left[s\right]  

 12π0 Fs[s]sinsx ds=f(x) \frac{1}{\sqrt{2\pi}}\int_0^{\infty}\ F_s\left[s\right]\sin sx\ ds=f\left(x\right)\   

 2π0Fs[s]sinsx ds = f(x) \sqrt{\frac{2}{\pi}}\int_0^{\infty}F_s\left[s\right]\sin sx\ ds\ =\ f\left(x\right)\   

 12π Fs[s]  cossx dx =f(x)\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\ F_s\left[s\right]\ \ \cos sx\ dx\ =f\left(x\right)  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?