Regla de la cadena multivariable

Regla de la cadena multivariable

Professional Development

8 Qs

quiz-placeholder

Similar activities

Números Complejos I

Números Complejos I

7th Grade - Professional Development

10 Qs

VN2-T20

VN2-T20

Professional Development

10 Qs

Module 1 Vecteurs et droites de l'espace

Module 1 Vecteurs et droites de l'espace

9th Grade - Professional Development

8 Qs

u know (troll sometimes)

u know (troll sometimes)

KG - Professional Development

5 Qs

Taller 2 primera parte

Taller 2 primera parte

Professional Development

8 Qs

Derivadas parciales Mating-1

Derivadas parciales Mating-1

University - Professional Development

10 Qs

N2-T30-Ecuaciones fraccionarias 2

N2-T30-Ecuaciones fraccionarias 2

Professional Development

10 Qs

Fundamental Operations 5.1

Fundamental Operations 5.1

University - Professional Development

8 Qs

Regla de la cadena multivariable

Regla de la cadena multivariable

Assessment

Quiz

Mathematics

Professional Development

Medium

Created by

José Torre

Used 73+ times

FREE Resource

8 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 z=ex3yz=e^{x-3y}  donde  x=vu3vx=vu^3-v  como  y=u4vy=u-4v  las derivadas  zu\frac{\partial z}{\partial u}  y  zv\frac{\partial z}{\partial v}  es:

 zu=3ex3y(vu21); zv=ex3y(u3+11)\frac{\partial z}{\partial u}=3e^{x-3y}\left(vu^2-1\right);\ \frac{\partial z}{\partial v}=e^{x-3y}\left(u^3+11\right)  

 zu=3ex3y(u3+11); zv=ex3y(vu21)\frac{\partial z}{\partial u}=3e^{x-3y}\left(u^3+11\right);\ \frac{\partial z}{\partial v}=e^{x-3y}\left(vu^2-1\right)  

 zu=3ex3y(u311); zv=ex3y(vu2+1)\frac{\partial z}{\partial u}=3e^{x-3y}\left(u^3-11\right);\ \frac{\partial z}{\partial v}=e^{x-3y}\left(vu^2+1\right)  

2.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 z=y2x+1z=y^2\sqrt{x+1}  donde  x=t3tx=t^3-t  como  y=t22t+4y=t^2-2t+4  la derivada  zt\frac{\partial z}{\partial t} es:

 dzdt=y22x+1(3t21)+2yx+1(2t2)\frac{\text{d}z}{\text{d}t}=\frac{y^2}{2\sqrt{x+1}}\left(3t^2-1\right)+2y\sqrt{x+1}\left(2t-2\right)  

 dzdt=y22x+1(3t21)+2yx+1(2t+2)\frac{\text{d}z}{\text{d}t}=\frac{y^2}{2\sqrt{x+1}}\left(3t^2-1\right)+2y\sqrt{x+1}\left(2t+2\right)  

3.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 f=x+(y2)3f=x+\left(y-2\right)^3  donde  x=r+5tx=r+5t  como  y=3r4ty=3r-4t  la derivada  ft\frac{\partial f}{\partial t}  es:

 ft=512(y2)2\frac{\partial f}{\partial t}=5-12\left(y-2\right)^2  

 ft=5+12(y2)2\frac{\partial f}{\partial t}=5+12\left(y-2\right)^2  

 ft=512(y+2)2\frac{\partial f}{\partial t}=5-12\left(y+2\right)^2  

 ft=5+12(y+2)2\frac{\partial f}{\partial t}=5+12\left(y+2\right)^2  

4.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

5.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 z=x+y2z=\sqrt{x+y^2}  donde  x=t2+tx=t^2+t  como  y=t200y=t-200  la derivada  zt\frac{\partial z}{\partial t}  es:

 zt=2t2+4t+12x+y2\frac{\partial z}{\partial t}=\frac{2t^2+4t+1}{2\sqrt{x+y^2}}  

 zt=2t24t+12x+y2\frac{\partial z}{\partial t}=\frac{2t^2-4t+1}{2\sqrt{x+y^2}}  

 zt=2t2+4t+12xy2\frac{\partial z}{\partial t}=\frac{2t^2+4t+1}{2\sqrt{x-y^2}}  

 zt=2t2+t+12x+y2\frac{\partial z}{\partial t}=\frac{2t^2+t+1}{2\sqrt{x+y^2}}  

6.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 z=exyzz=e^{xyz}  donde  x=r+5tx=r+5t  como  y=2t3y=2t^3  además  z=13r2z=1-3r^2   las derivadas  zt\frac{\partial z}{\partial t}  y  zr\frac{\partial z}{\partial r}  es:

 zt=5yzexyz+xzexyz6t2; zr=yzexyz6xyexyzr\frac{\partial z}{\partial t}=5yze^{xyz}+xze^{xyz}6t^2;\ \frac{\partial z}{\partial r}=yze^{xyz}6xye^{xyz}r  

 zt=5yzexyzxzexyz6t2; zr=yzexyz6xyexyzr\frac{\partial z}{\partial t}=5yze^{xyz}-xze^{xyz}6t^2;\ \frac{\partial z}{\partial r}=yze^{xyz}6xye^{xyz}r  

7.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 y=e2x2y=e^{2x^2}  donde  x=r3t2x=r-3t^2  las derivadas  yr\frac{\partial y}{\partial r}  y  yt\frac{\partial y}{\partial t}  es:

 yr=4xe2x2; yt=24txe2x2\frac{\partial y}{\partial r}=4xe^{2x^2};\ \frac{\partial y}{\partial t}=-24txe^{2x^2}  

 yr=4xe2x2; yt=24txe2x2\frac{\partial y}{\partial r}=4xe^{2x^2};\ \frac{\partial y}{\partial t}=24txe^{2x^2}  

 yr=4xe2x2; yt=24txe2x2\frac{\partial y}{\partial r}=-4xe^{2x^2};\ \frac{\partial y}{\partial t}=-24txe^{2x^2}  

 yr=4xe2x2; yt=24txe2x2\frac{\partial y}{\partial r}=-4xe^{2x^2};\ \frac{\partial y}{\partial t}=24txe^{2x^2}  

8.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 w=xyx2yzw=xy-x^2yz  donde  x=t1x=t-1  como  y=2t3y=2t^3 además  z=t2+1z=t^2+1   la derivada  wt\frac{\partial w}{\partial t}  es:

 dwdt=(y2xyz)+(xzx2)6t2(y+x2y)2t\frac{\text{d}w}{\text{d}t}=\left(y-2xyz\right)+\left(x-z-x^2\right)6t^2-\left(y+x^2y\right)2t  

 dwdt=(y2xyz)(xzx2)6t2(y+x2y)2t\frac{\text{d}w}{\text{d}t}=\left(y-2xyz\right)-\left(x-z-x^2\right)6t^2-\left(y+x^2y\right)2t