Regla de la cadena multivariable

Regla de la cadena multivariable

Professional Development

8 Qs

quiz-placeholder

Similar activities

Latihan Soal PELUANG

Latihan Soal PELUANG

Professional Development

10 Qs

In Center of Gravity

In Center of Gravity

Professional Development

10 Qs

Fracciones

Fracciones

Professional Development

10 Qs

remidi Kelas XI

remidi Kelas XI

KG - Professional Development

10 Qs

Rational Numbers - Monday

Rational Numbers - Monday

Professional Development

10 Qs

авто

авто

Professional Development

10 Qs

Minificha Taxa de Variação média

Minificha Taxa de Variação média

Professional Development

12 Qs

Statistiques 2

Statistiques 2

Professional Development

11 Qs

Regla de la cadena multivariable

Regla de la cadena multivariable

Assessment

Quiz

Mathematics

Professional Development

Medium

Created by

José Torre

Used 74+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

8 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 z=ex3yz=e^{x-3y}  donde  x=vu3vx=vu^3-v  como  y=u4vy=u-4v  las derivadas  zu\frac{\partial z}{\partial u}  y  zv\frac{\partial z}{\partial v}  es:

 zu=3ex3y(vu21); zv=ex3y(u3+11)\frac{\partial z}{\partial u}=3e^{x-3y}\left(vu^2-1\right);\ \frac{\partial z}{\partial v}=e^{x-3y}\left(u^3+11\right)  

 zu=3ex3y(u3+11); zv=ex3y(vu21)\frac{\partial z}{\partial u}=3e^{x-3y}\left(u^3+11\right);\ \frac{\partial z}{\partial v}=e^{x-3y}\left(vu^2-1\right)  

 zu=3ex3y(u311); zv=ex3y(vu2+1)\frac{\partial z}{\partial u}=3e^{x-3y}\left(u^3-11\right);\ \frac{\partial z}{\partial v}=e^{x-3y}\left(vu^2+1\right)  

2.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 z=y2x+1z=y^2\sqrt{x+1}  donde  x=t3tx=t^3-t  como  y=t22t+4y=t^2-2t+4  la derivada  zt\frac{\partial z}{\partial t} es:

 dzdt=y22x+1(3t21)+2yx+1(2t2)\frac{\text{d}z}{\text{d}t}=\frac{y^2}{2\sqrt{x+1}}\left(3t^2-1\right)+2y\sqrt{x+1}\left(2t-2\right)  

 dzdt=y22x+1(3t21)+2yx+1(2t+2)\frac{\text{d}z}{\text{d}t}=\frac{y^2}{2\sqrt{x+1}}\left(3t^2-1\right)+2y\sqrt{x+1}\left(2t+2\right)  

3.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 f=x+(y2)3f=x+\left(y-2\right)^3  donde  x=r+5tx=r+5t  como  y=3r4ty=3r-4t  la derivada  ft\frac{\partial f}{\partial t}  es:

 ft=512(y2)2\frac{\partial f}{\partial t}=5-12\left(y-2\right)^2  

 ft=5+12(y2)2\frac{\partial f}{\partial t}=5+12\left(y-2\right)^2  

 ft=512(y+2)2\frac{\partial f}{\partial t}=5-12\left(y+2\right)^2  

 ft=5+12(y+2)2\frac{\partial f}{\partial t}=5+12\left(y+2\right)^2  

4.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

5.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 z=x+y2z=\sqrt{x+y^2}  donde  x=t2+tx=t^2+t  como  y=t200y=t-200  la derivada  zt\frac{\partial z}{\partial t}  es:

 zt=2t2+4t+12x+y2\frac{\partial z}{\partial t}=\frac{2t^2+4t+1}{2\sqrt{x+y^2}}  

 zt=2t24t+12x+y2\frac{\partial z}{\partial t}=\frac{2t^2-4t+1}{2\sqrt{x+y^2}}  

 zt=2t2+4t+12xy2\frac{\partial z}{\partial t}=\frac{2t^2+4t+1}{2\sqrt{x-y^2}}  

 zt=2t2+t+12x+y2\frac{\partial z}{\partial t}=\frac{2t^2+t+1}{2\sqrt{x+y^2}}  

6.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 z=exyzz=e^{xyz}  donde  x=r+5tx=r+5t  como  y=2t3y=2t^3  además  z=13r2z=1-3r^2   las derivadas  zt\frac{\partial z}{\partial t}  y  zr\frac{\partial z}{\partial r}  es:

 zt=5yzexyz+xzexyz6t2; zr=yzexyz6xyexyzr\frac{\partial z}{\partial t}=5yze^{xyz}+xze^{xyz}6t^2;\ \frac{\partial z}{\partial r}=yze^{xyz}6xye^{xyz}r  

 zt=5yzexyzxzexyz6t2; zr=yzexyz6xyexyzr\frac{\partial z}{\partial t}=5yze^{xyz}-xze^{xyz}6t^2;\ \frac{\partial z}{\partial r}=yze^{xyz}6xye^{xyz}r  

7.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 y=e2x2y=e^{2x^2}  donde  x=r3t2x=r-3t^2  las derivadas  yr\frac{\partial y}{\partial r}  y  yt\frac{\partial y}{\partial t}  es:

 yr=4xe2x2; yt=24txe2x2\frac{\partial y}{\partial r}=4xe^{2x^2};\ \frac{\partial y}{\partial t}=-24txe^{2x^2}  

 yr=4xe2x2; yt=24txe2x2\frac{\partial y}{\partial r}=4xe^{2x^2};\ \frac{\partial y}{\partial t}=24txe^{2x^2}  

 yr=4xe2x2; yt=24txe2x2\frac{\partial y}{\partial r}=-4xe^{2x^2};\ \frac{\partial y}{\partial t}=-24txe^{2x^2}  

 yr=4xe2x2; yt=24txe2x2\frac{\partial y}{\partial r}=-4xe^{2x^2};\ \frac{\partial y}{\partial t}=24txe^{2x^2}  

8.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 w=xyx2yzw=xy-x^2yz  donde  x=t1x=t-1  como  y=2t3y=2t^3 además  z=t2+1z=t^2+1   la derivada  wt\frac{\partial w}{\partial t}  es:

 dwdt=(y2xyz)+(xzx2)6t2(y+x2y)2t\frac{\text{d}w}{\text{d}t}=\left(y-2xyz\right)+\left(x-z-x^2\right)6t^2-\left(y+x^2y\right)2t  

 dwdt=(y2xyz)(xzx2)6t2(y+x2y)2t\frac{\text{d}w}{\text{d}t}=\left(y-2xyz\right)-\left(x-z-x^2\right)6t^2-\left(y+x^2y\right)2t  

Discover more resources for Mathematics