Regla de la cadena multivariable

Regla de la cadena multivariable

Professional Development

8 Qs

quiz-placeholder

Similar activities

Fundamental Operations 5.1

Fundamental Operations 5.1

University - Professional Development

8 Qs

Identificación de la Expresión Algebraica

Identificación de la Expresión Algebraica

University - Professional Development

10 Qs

derivadas parciales

derivadas parciales

Professional Development

8 Qs

N2-T30-Ecuaciones fraccionarias 2

N2-T30-Ecuaciones fraccionarias 2

Professional Development

10 Qs

nija spoted

nija spoted

KG - Professional Development

10 Qs

1.2 Circuitos Elétricos - Operadores Matemáticos - Évio

1.2 Circuitos Elétricos - Operadores Matemáticos - Évio

Professional Development

10 Qs

Persamaan Linear Satu Variabel

Persamaan Linear Satu Variabel

Professional Development

10 Qs

VH RAZONAMIENTO LOGICO

VH RAZONAMIENTO LOGICO

Professional Development

10 Qs

Regla de la cadena multivariable

Regla de la cadena multivariable

Assessment

Quiz

Mathematics

Professional Development

Medium

Created by

José Torre

Used 73+ times

FREE Resource

8 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 z=ex3yz=e^{x-3y}  donde  x=vu3vx=vu^3-v  como  y=u4vy=u-4v  las derivadas  zu\frac{\partial z}{\partial u}  y  zv\frac{\partial z}{\partial v}  es:

 zu=3ex3y(vu21); zv=ex3y(u3+11)\frac{\partial z}{\partial u}=3e^{x-3y}\left(vu^2-1\right);\ \frac{\partial z}{\partial v}=e^{x-3y}\left(u^3+11\right)  

 zu=3ex3y(u3+11); zv=ex3y(vu21)\frac{\partial z}{\partial u}=3e^{x-3y}\left(u^3+11\right);\ \frac{\partial z}{\partial v}=e^{x-3y}\left(vu^2-1\right)  

 zu=3ex3y(u311); zv=ex3y(vu2+1)\frac{\partial z}{\partial u}=3e^{x-3y}\left(u^3-11\right);\ \frac{\partial z}{\partial v}=e^{x-3y}\left(vu^2+1\right)  

2.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 z=y2x+1z=y^2\sqrt{x+1}  donde  x=t3tx=t^3-t  como  y=t22t+4y=t^2-2t+4  la derivada  zt\frac{\partial z}{\partial t} es:

 dzdt=y22x+1(3t21)+2yx+1(2t2)\frac{\text{d}z}{\text{d}t}=\frac{y^2}{2\sqrt{x+1}}\left(3t^2-1\right)+2y\sqrt{x+1}\left(2t-2\right)  

 dzdt=y22x+1(3t21)+2yx+1(2t+2)\frac{\text{d}z}{\text{d}t}=\frac{y^2}{2\sqrt{x+1}}\left(3t^2-1\right)+2y\sqrt{x+1}\left(2t+2\right)  

3.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 f=x+(y2)3f=x+\left(y-2\right)^3  donde  x=r+5tx=r+5t  como  y=3r4ty=3r-4t  la derivada  ft\frac{\partial f}{\partial t}  es:

 ft=512(y2)2\frac{\partial f}{\partial t}=5-12\left(y-2\right)^2  

 ft=5+12(y2)2\frac{\partial f}{\partial t}=5+12\left(y-2\right)^2  

 ft=512(y+2)2\frac{\partial f}{\partial t}=5-12\left(y+2\right)^2  

 ft=5+12(y+2)2\frac{\partial f}{\partial t}=5+12\left(y+2\right)^2  

4.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

5.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 z=x+y2z=\sqrt{x+y^2}  donde  x=t2+tx=t^2+t  como  y=t200y=t-200  la derivada  zt\frac{\partial z}{\partial t}  es:

 zt=2t2+4t+12x+y2\frac{\partial z}{\partial t}=\frac{2t^2+4t+1}{2\sqrt{x+y^2}}  

 zt=2t24t+12x+y2\frac{\partial z}{\partial t}=\frac{2t^2-4t+1}{2\sqrt{x+y^2}}  

 zt=2t2+4t+12xy2\frac{\partial z}{\partial t}=\frac{2t^2+4t+1}{2\sqrt{x-y^2}}  

 zt=2t2+t+12x+y2\frac{\partial z}{\partial t}=\frac{2t^2+t+1}{2\sqrt{x+y^2}}  

6.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 z=exyzz=e^{xyz}  donde  x=r+5tx=r+5t  como  y=2t3y=2t^3  además  z=13r2z=1-3r^2   las derivadas  zt\frac{\partial z}{\partial t}  y  zr\frac{\partial z}{\partial r}  es:

 zt=5yzexyz+xzexyz6t2; zr=yzexyz6xyexyzr\frac{\partial z}{\partial t}=5yze^{xyz}+xze^{xyz}6t^2;\ \frac{\partial z}{\partial r}=yze^{xyz}6xye^{xyz}r  

 zt=5yzexyzxzexyz6t2; zr=yzexyz6xyexyzr\frac{\partial z}{\partial t}=5yze^{xyz}-xze^{xyz}6t^2;\ \frac{\partial z}{\partial r}=yze^{xyz}6xye^{xyz}r  

7.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 y=e2x2y=e^{2x^2}  donde  x=r3t2x=r-3t^2  las derivadas  yr\frac{\partial y}{\partial r}  y  yt\frac{\partial y}{\partial t}  es:

 yr=4xe2x2; yt=24txe2x2\frac{\partial y}{\partial r}=4xe^{2x^2};\ \frac{\partial y}{\partial t}=-24txe^{2x^2}  

 yr=4xe2x2; yt=24txe2x2\frac{\partial y}{\partial r}=4xe^{2x^2};\ \frac{\partial y}{\partial t}=24txe^{2x^2}  

 yr=4xe2x2; yt=24txe2x2\frac{\partial y}{\partial r}=-4xe^{2x^2};\ \frac{\partial y}{\partial t}=-24txe^{2x^2}  

 yr=4xe2x2; yt=24txe2x2\frac{\partial y}{\partial r}=-4xe^{2x^2};\ \frac{\partial y}{\partial t}=24txe^{2x^2}  

8.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 w=xyx2yzw=xy-x^2yz  donde  x=t1x=t-1  como  y=2t3y=2t^3 además  z=t2+1z=t^2+1   la derivada  wt\frac{\partial w}{\partial t}  es:

 dwdt=(y2xyz)+(xzx2)6t2(y+x2y)2t\frac{\text{d}w}{\text{d}t}=\left(y-2xyz\right)+\left(x-z-x^2\right)6t^2-\left(y+x^2y\right)2t  

 dwdt=(y2xyz)(xzx2)6t2(y+x2y)2t\frac{\text{d}w}{\text{d}t}=\left(y-2xyz\right)-\left(x-z-x^2\right)6t^2-\left(y+x^2y\right)2t