Search Header Logo

Graphs of Logarithmic Functions

Authored by Pamela Thompson

Mathematics

11th - 12th Grade

CCSS covered

Used 299+ times

Graphs of Logarithmic Functions
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Which function best describes the following graph?

y = Log2 X

2x = y

y = 1/(2x)

(1/2)x = y

Tags

CCSS.HSF-IF.C.7E

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

What is the correct transformed equation for the graph?

y = log(x - 4)

y = log(x) - 4

y = log(x + 4)

y = log(x) + 4

Tags

CCSS.HSF-IF.C.7E

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

What is the range of the function graphed?

(-∞, ∞)

(-∞, 2] and [2, ∞)

[2, ∞)

(-∞, 2]

Tags

CCSS.8.F.A.1

CCSS.HSF.IF.B.5

4.

MULTIPLE CHOICE QUESTION

2 mins • 12 pts

Logarithmic functions are the inverse of...

Linear Functions
Exponential Functions 
Quadratic Functions 
Polynomial Functions 

Tags

CCSS.HSF.BF.B.5

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

What is the equation of the asymptote on the graph of   y=log5(x+3)+5y=\log_5\left(x+3\right)+5 

x = -3

x=5

y= -3

y=5

Tags

CCSS.HSF-IF.C.7E

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Compared to the graph of  f(x)=log2xf\left(x\right)=\log_2x , the asymptote on  g(x)=log2(3x+12)g\left(x\right)=\log_2\left(3x+12\right)   will be translated...

12 units left to x = -12

12 units right to x = 12

4 units left to x = -4

4 units right to x = 4

not at all and remain x = 0

Tags

CCSS.HSF-IF.C.7E

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which of the following has a vertical asymptote at x=4x=4  

 y=2x4y=2^x-4  

 y=log2(x4)y=\log_2\left(x-4\right)  

 y=2x+4y=2^x+4  

 y=log2(x+4)y=\log_2\left(x+4\right)  

Tags

CCSS.HSF-IF.C.7E

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?