Derivadas de funciones algebraicas

Derivadas de funciones algebraicas

12th Grade

12 Qs

quiz-placeholder

Similar activities

Writing Exponential Functions from a Graph and Table

Writing Exponential Functions from a Graph and Table

8th - 12th Grade

10 Qs

SIMULASI UN MATEMATIKA SMA

SIMULASI UN MATEMATIKA SMA

12th Grade

12 Qs

GRAFIK FUNGSI TRIGONOMETRI

GRAFIK FUNGSI TRIGONOMETRI

10th - 12th Grade

10 Qs

Inverse Trig Derivatives

Inverse Trig Derivatives

10th - 12th Grade

12 Qs

Rational Function Transformations

Rational Function Transformations

9th - 12th Grade

9 Qs

قواعد الاشتقاق

قواعد الاشتقاق

11th - 12th Grade

12 Qs

Inverse Function

Inverse Function

11th - 12th Grade

15 Qs

TURUNAN TRIGONOMETRI

TURUNAN TRIGONOMETRI

12th Grade

10 Qs

Derivadas de funciones algebraicas

Derivadas de funciones algebraicas

Assessment

Quiz

Mathematics

12th Grade

Medium

Created by

Sergio de la Torre

Used 12+ times

FREE Resource

12 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

Daniela establece que: para calcular la derivada de una función basta con sustituir y calcular el límite en la expresión para la derivada; sin embargo, en ocasiones esto puede generar confusión al momento de realizar el desarrollo de toda la expresión. Por ello, es recomendable llevarlo a cabo en varios pasos: (ver imagen)

¿ cual de los siguientes pasos no es correcto?

I

II

III

IV

2.

FILL IN THE BLANK QUESTION

15 mins • 1 pt

Hallar la derivada usando la definición de  f(x)=x2+7f\left(x\right)=x^2+7  

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

La derivada de la función

 f(x)=9x34x2f\left(x\right)=\frac{9}{x^3}-\frac{4}{x^{-2}}  es

 dydx=27x48x\frac{\text{d}y}{\text{d}x}=-\frac{27}{x^4}-8x  

 dydx=27x2+8x3\frac{\text{d}y}{\text{d}x}=\frac{27}{x^2}+\frac{8}{x^3}  

 dydx=27x38x\frac{\text{d}y}{\text{d}x}=-\frac{27}{x^3}-\frac{8}{x}  

 dydx=27x+8x\frac{\text{d}y}{\text{d}x}=\frac{27}{x}+8x  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Hallar la derivada  f(r)=3+2r23r+1f\left(r\right)=\frac{3+2r^2}{3r+1}  

 f(r)=(4r3)2(2r3)5f'\left(r\right)=\frac{\left(4r-3\right)^2}{\left(2r-3\right)^5}  

 f(r)=4r (3r+1)2f'\left(r\right)=\frac{4r\ }{\left(3r+1\right)^2}  

 f(r)=6r2+4r9(3r+1)2f'\left(r\right)=\frac{6r^2+4r-9}{\left(3r+1\right)^2}  

 f(r)=18r2+4r+9(3r+1)2f'\left(r\right)=\frac{18r^2+4r+9}{\left(3r+1\right)^2}  

5.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Hallar la derivada de  f(t)=(4t5)(t23)2f\left(t\right)=\left(4t-5\right)\left(t^2-3\right)^2  

 f(t)=4(t23)(5t25t3)f'\left(t\right)=4\left(t^2-3\right)\left(5t^2-5t-3\right)  

 f(t)=4(t2+3)(5t3)f'\left(t\right)=4\left(t^2+3\right)\left(5t-3\right)  

 f(t)=8t(t23)f'\left(t\right)=8t\left(t^2-3\right)  

 f(t)=(t23)(20t2+20t12)f'\left(t\right)=\left(t^2-3\right)\left(20t^2+20t-12\right)  

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Hallar la derivada  f(k)=1(2k511)4f\left(k\right)=\frac{1}{\left(2k^5-11\right)^4}  

 f(k)=40k4(2k511)5f'\left(k\right)=\frac{40k^4}{\left(2k^5-11\right)^5}  

 f(k)=40k4(2k511)5f'\left(k\right)=-\frac{40k^4}{\left(2k^5-11\right)^5}  

 f(k)=40k3(2k511)3f'\left(k\right)=-\frac{40k^3}{\left(2k^5-11\right)^3}  

 f(k)=40k4(2k57)3f'\left(k\right)=\frac{40k^4}{\left(2k^5-7\right)^3}  

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

La derivada de la función

 h(x)=12  x3 +5 x54x2+3h(x)=\frac{1}{2}\ \ ∜x^3\ +5\ ∛x^5-\frac{4}{∛x^2}+3  

 h´(x)=38x14+253x23+83x53h´\left(x\right)=\frac{3}{8}x^{\frac{1}{4}}+\frac{25}{3}x^{\frac{2}{3}}+\frac{8}{3x^{\frac{5}{3}}}  

 h´(x)=38x14+253x2383x53h´\left(x\right)=\frac{3}{8}x^{\frac{1}{4}}+\frac{25}{3}x^{\frac{2}{3}}-\frac{8}{3x^{\frac{5}{3}}}  

 h´(x)=38x14+253x23+83x53h´\left(x\right)=\frac{3}{8x^{\frac{1}{4}}}+\frac{25}{3}x^{\frac{2}{3}}+\frac{8}{3x^{\frac{5}{3}}}  

 h´(x)=38x14253x2383x53h´\left(x\right)=\frac{3}{8x^{\frac{1}{4}}}-\frac{25}{3}x^{\frac{2}{3}}-\frac{8}{3x^{\frac{5}{3}}}  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?