Algebra Lineal-EXAMEN T4- Espacios Vectoriales

Algebra Lineal-EXAMEN T4- Espacios Vectoriales

University

10 Qs

quiz-placeholder

Similar activities

Funciones trigonométricas, primer cuadrante

Funciones trigonométricas, primer cuadrante

10th Grade - University

15 Qs

Integrals in Summation Notation

Integrals in Summation Notation

11th Grade - University

13 Qs

Trig Functions of Any Angles

Trig Functions of Any Angles

University

14 Qs

ELIPSE

ELIPSE

University

15 Qs

Maximos y minimos multivariable

Maximos y minimos multivariable

University

10 Qs

Ujian Matematika SMA

Ujian Matematika SMA

University

10 Qs

Calculs Seconde générale Chapitre 1

Calculs Seconde générale Chapitre 1

9th Grade - Professional Development

9 Qs

ฟังก์ชันตรีโกณมิติของวงกลมหนึ่งหน่วย

ฟังก์ชันตรีโกณมิติของวงกลมหนึ่งหน่วย

9th Grade - University

10 Qs

Algebra Lineal-EXAMEN T4- Espacios Vectoriales

Algebra Lineal-EXAMEN T4- Espacios Vectoriales

Assessment

Quiz

Mathematics

University

Hard

Used 14+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Determinar el valor de x para que el vector (1, x, 5) ∈ R3 pertenezca al subespacio < (1, 2, 3),(1, 1, 1) >

α = 2, β = −1 y x = 3

α = 3, β = −1 y x = 2

α = 2, β = 1 y x = -3

α = 3, β = 2 y x = 1

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Determinar los valores de a y b, si es que existen, para que

< (a, 1, −1, 2),(1, b, 0, 3) > = < (1, −1, 1, −2),(−2, 0, 0, −6) >

a = −1 y b = 0

a = 1 y b = 0

a = −1 y b = 1

a = 0 y b = 1

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Utilizar el proceso de Gram-Schmidt para transformar la siguiente base en  en una base ortonormal
 B={(5, 1, 1, 3), (9, 3, 3, 7), (5, 5, 1,5)}B=\left\{\left(5,\ 1,\ 1,\ -3\right),\ \left(9,\ 3,\ 3,\ -7\right),\ \left(-5,\ 5,\ -1,5\right)\right\}  

  {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ -\frac{1}{2}\right),\ \left(-\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ -\frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

 {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ \frac{1}{2}\right),\ \left(-\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ -\frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

 {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ -\frac{1}{2}\right),\ \left(\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ -\frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

 {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ -\frac{1}{2}\right),\ \left(-\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ \frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Hallar el vector vv⃗ tal que  w=2u+vw⃗=2u⃗+v⃗   

 u=(4,1)     w=(3,2)u⃗=(4,-1)\ \ \ \ \ w⃗=(3,2)  

 v=(5,4)v⃗=(-5,4)  

 v=(5,4)v⃗=(5,4)  

 v=(5,4)v⃗=(5,-4)  

 v=(5,4)v⃗=(-5,-4)  

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Hallar las coordenadas del vector    vv⃗ de tal manera que  w=3u1/5vw⃗=3u⃗-1/5v⃗   , siendo:  u=(1,2)     w=(3,5)u⃗=(1,2)\ \ \ \ \ w⃗=(-3,5)  

 v=(5, 30)v⃗=(5,\ 30)  

 v=(30,5)v⃗=(-30,5)  

 v=(30,5)v⃗=(30,5)  

 v=(30,5)v⃗=(30,-5)  

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Utilizar el proceso de Gram-Schmidt para transformar la siguiente base en  en una base ortonormal:  B=(0,2,3,3,1),(3,5,0,0,5),(2,1,4,1,3)B=(0,-2,-3,-3,1),(3,-5,0,0,5),(2,1,4,1,3)  

 {(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}\left\{\left(0,\ -\frac{2}{\sqrt{23}},\ -\frac{3}{\sqrt{23}},\ \frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

 {(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}\left\{\left(0,\ -\frac{2}{\sqrt{23}},\ \frac{3}{\sqrt{23}},\ -\frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

 {(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}\left\{\left(0,\ \frac{2}{\sqrt{23}},\ -\frac{3}{\sqrt{23}},\ -\frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

 B={(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}B'=\left\{\left(0,\ -\frac{2}{\sqrt{23}},\ -\frac{3}{\sqrt{23}},\ -\frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Comprobar que el vector  w=(4,7)w⃗=(4,7)   es combinación lineal de los vectores:  u=(2,1)u⃗=(2,1)   y  v=(0,5)v⃗=(0,5)   y, ¿Qué combinación forman? 

 w=2u+vw⃗=2u⃗+v⃗  

 w=u+2vw⃗=u⃗+2v⃗  

 w=2u+3vw⃗=2u⃗+3v⃗  

 w=u+vw⃗=u⃗+v⃗  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?

Discover more resources for Mathematics