Algebra Lineal-EXAMEN T4- Espacios Vectoriales

Algebra Lineal-EXAMEN T4- Espacios Vectoriales

University

10 Qs

quiz-placeholder

Similar activities

Calculs Seconde générale Chapitre 1

Calculs Seconde générale Chapitre 1

9th Grade - Professional Development

9 Qs

Remedial Limit Fungsi Aljabar

Remedial Limit Fungsi Aljabar

University

15 Qs

Complex Number and Polar Plane

Complex Number and Polar Plane

11th Grade - University

10 Qs

Integrals in Summation Notation

Integrals in Summation Notation

11th Grade - University

13 Qs

Matura matematyka

Matura matematyka

University

10 Qs

Bilangan Eksponen dan Bilangan Akar

Bilangan Eksponen dan Bilangan Akar

University

15 Qs

Ujian Matematika SMA

Ujian Matematika SMA

University

10 Qs

Testing Series for Convergence/Divergence

Testing Series for Convergence/Divergence

11th Grade - University

10 Qs

Algebra Lineal-EXAMEN T4- Espacios Vectoriales

Algebra Lineal-EXAMEN T4- Espacios Vectoriales

Assessment

Quiz

Mathematics

University

Hard

Used 15+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Determinar el valor de x para que el vector (1, x, 5) ∈ R3 pertenezca al subespacio < (1, 2, 3),(1, 1, 1) >

α = 2, β = −1 y x = 3

α = 3, β = −1 y x = 2

α = 2, β = 1 y x = -3

α = 3, β = 2 y x = 1

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Determinar los valores de a y b, si es que existen, para que

< (a, 1, −1, 2),(1, b, 0, 3) > = < (1, −1, 1, −2),(−2, 0, 0, −6) >

a = −1 y b = 0

a = 1 y b = 0

a = −1 y b = 1

a = 0 y b = 1

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Utilizar el proceso de Gram-Schmidt para transformar la siguiente base en  en una base ortonormal
 B={(5, 1, 1, 3), (9, 3, 3, 7), (5, 5, 1,5)}B=\left\{\left(5,\ 1,\ 1,\ -3\right),\ \left(9,\ 3,\ 3,\ -7\right),\ \left(-5,\ 5,\ -1,5\right)\right\}  

  {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ -\frac{1}{2}\right),\ \left(-\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ -\frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

 {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ \frac{1}{2}\right),\ \left(-\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ -\frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

 {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ -\frac{1}{2}\right),\ \left(\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ -\frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

 {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ -\frac{1}{2}\right),\ \left(-\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ \frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Hallar el vector vv⃗ tal que  w=2u+vw⃗=2u⃗+v⃗   

 u=(4,1)     w=(3,2)u⃗=(4,-1)\ \ \ \ \ w⃗=(3,2)  

 v=(5,4)v⃗=(-5,4)  

 v=(5,4)v⃗=(5,4)  

 v=(5,4)v⃗=(5,-4)  

 v=(5,4)v⃗=(-5,-4)  

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Hallar las coordenadas del vector    vv⃗ de tal manera que  w=3u1/5vw⃗=3u⃗-1/5v⃗   , siendo:  u=(1,2)     w=(3,5)u⃗=(1,2)\ \ \ \ \ w⃗=(-3,5)  

 v=(5, 30)v⃗=(5,\ 30)  

 v=(30,5)v⃗=(-30,5)  

 v=(30,5)v⃗=(30,5)  

 v=(30,5)v⃗=(30,-5)  

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Utilizar el proceso de Gram-Schmidt para transformar la siguiente base en  en una base ortonormal:  B=(0,2,3,3,1),(3,5,0,0,5),(2,1,4,1,3)B=(0,-2,-3,-3,1),(3,-5,0,0,5),(2,1,4,1,3)  

 {(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}\left\{\left(0,\ -\frac{2}{\sqrt{23}},\ -\frac{3}{\sqrt{23}},\ \frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

 {(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}\left\{\left(0,\ -\frac{2}{\sqrt{23}},\ \frac{3}{\sqrt{23}},\ -\frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

 {(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}\left\{\left(0,\ \frac{2}{\sqrt{23}},\ -\frac{3}{\sqrt{23}},\ -\frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

 B={(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}B'=\left\{\left(0,\ -\frac{2}{\sqrt{23}},\ -\frac{3}{\sqrt{23}},\ -\frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Comprobar que el vector  w=(4,7)w⃗=(4,7)   es combinación lineal de los vectores:  u=(2,1)u⃗=(2,1)   y  v=(0,5)v⃗=(0,5)   y, ¿Qué combinación forman? 

 w=2u+vw⃗=2u⃗+v⃗  

 w=u+2vw⃗=u⃗+2v⃗  

 w=2u+3vw⃗=2u⃗+3v⃗  

 w=u+vw⃗=u⃗+v⃗  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?

Discover more resources for Mathematics