Algebra Lineal-EXAMEN T4- Espacios Vectoriales

Algebra Lineal-EXAMEN T4- Espacios Vectoriales

University

10 Qs

quiz-placeholder

Similar activities

Sec 2 Mat.111: Repaso Examen 4

Sec 2 Mat.111: Repaso Examen 4

University

15 Qs

7.2 Espacios muestrales

7.2 Espacios muestrales

University

10 Qs

9C BANGUN RUANG SISI LENGKUNG

9C BANGUN RUANG SISI LENGKUNG

9th Grade - University

15 Qs

PLAYING WITH NUMBERS

PLAYING WITH NUMBERS

KG - University

10 Qs

Toán lớp 3_3a1.tuần 25

Toán lớp 3_3a1.tuần 25

3rd Grade - University

10 Qs

ATURAN NILAI TEMPAT (XII MIPA.2)

ATURAN NILAI TEMPAT (XII MIPA.2)

University

15 Qs

Proposiciones simples y compuestas

Proposiciones simples y compuestas

University

10 Qs

Maths Revision Quiz (1) - Grade 3

Maths Revision Quiz (1) - Grade 3

3rd Grade - University

10 Qs

Algebra Lineal-EXAMEN T4- Espacios Vectoriales

Algebra Lineal-EXAMEN T4- Espacios Vectoriales

Assessment

Quiz

Mathematics

University

Hard

Used 15+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Determinar el valor de x para que el vector (1, x, 5) ∈ R3 pertenezca al subespacio < (1, 2, 3),(1, 1, 1) >

α = 2, β = −1 y x = 3

α = 3, β = −1 y x = 2

α = 2, β = 1 y x = -3

α = 3, β = 2 y x = 1

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Determinar los valores de a y b, si es que existen, para que

< (a, 1, −1, 2),(1, b, 0, 3) > = < (1, −1, 1, −2),(−2, 0, 0, −6) >

a = −1 y b = 0

a = 1 y b = 0

a = −1 y b = 1

a = 0 y b = 1

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Utilizar el proceso de Gram-Schmidt para transformar la siguiente base en  en una base ortonormal
 B={(5, 1, 1, 3), (9, 3, 3, 7), (5, 5, 1,5)}B=\left\{\left(5,\ 1,\ 1,\ -3\right),\ \left(9,\ 3,\ 3,\ -7\right),\ \left(-5,\ 5,\ -1,5\right)\right\}  

  {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ -\frac{1}{2}\right),\ \left(-\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ -\frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

 {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ \frac{1}{2}\right),\ \left(-\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ -\frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

 {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ -\frac{1}{2}\right),\ \left(\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ -\frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

 {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ -\frac{1}{2}\right),\ \left(-\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ \frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Hallar el vector vv⃗ tal que  w=2u+vw⃗=2u⃗+v⃗   

 u=(4,1)     w=(3,2)u⃗=(4,-1)\ \ \ \ \ w⃗=(3,2)  

 v=(5,4)v⃗=(-5,4)  

 v=(5,4)v⃗=(5,4)  

 v=(5,4)v⃗=(5,-4)  

 v=(5,4)v⃗=(-5,-4)  

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Hallar las coordenadas del vector    vv⃗ de tal manera que  w=3u1/5vw⃗=3u⃗-1/5v⃗   , siendo:  u=(1,2)     w=(3,5)u⃗=(1,2)\ \ \ \ \ w⃗=(-3,5)  

 v=(5, 30)v⃗=(5,\ 30)  

 v=(30,5)v⃗=(-30,5)  

 v=(30,5)v⃗=(30,5)  

 v=(30,5)v⃗=(30,-5)  

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Utilizar el proceso de Gram-Schmidt para transformar la siguiente base en  en una base ortonormal:  B=(0,2,3,3,1),(3,5,0,0,5),(2,1,4,1,3)B=(0,-2,-3,-3,1),(3,-5,0,0,5),(2,1,4,1,3)  

 {(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}\left\{\left(0,\ -\frac{2}{\sqrt{23}},\ -\frac{3}{\sqrt{23}},\ \frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

 {(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}\left\{\left(0,\ -\frac{2}{\sqrt{23}},\ \frac{3}{\sqrt{23}},\ -\frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

 {(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}\left\{\left(0,\ \frac{2}{\sqrt{23}},\ -\frac{3}{\sqrt{23}},\ -\frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

 B={(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}B'=\left\{\left(0,\ -\frac{2}{\sqrt{23}},\ -\frac{3}{\sqrt{23}},\ -\frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Comprobar que el vector  w=(4,7)w⃗=(4,7)   es combinación lineal de los vectores:  u=(2,1)u⃗=(2,1)   y  v=(0,5)v⃗=(0,5)   y, ¿Qué combinación forman? 

 w=2u+vw⃗=2u⃗+v⃗  

 w=u+2vw⃗=u⃗+2v⃗  

 w=2u+3vw⃗=2u⃗+3v⃗  

 w=u+vw⃗=u⃗+v⃗  

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?