Search Header Logo

Differential Equations Review

Authored by Art Young

Mathematics

11th Grade - University

CCSS covered

Used 22+ times

Differential Equations Review
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Which of the following differential equations match the graph above?

 

 dydx=y21\frac{\text{d}y}{\text{d}x}=y^2-1  

 dydx=x21\frac{\text{d}y}{\text{d}x}=x^2-1  

 dydx=y2+1\frac{\text{d}y}{\text{d}x}=y^2+1  

 dydx=x2+1\frac{\text{d}y}{\text{d}x}=x^2+1  

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Suppose y=f(x) is a particular solution to the differential equation dy/dx=x–y such that f(0)=0. Use the slope field above to estimate the value of f(2).

-2

-1

0

1

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Match the following differential equation with the correct slope field: dy/dx=x–y^2.

Media Image
Media Image
Media Image
Media Image

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Shown above is a slope field for which of the following differential equations?

dydx=1+x\frac{dy}{dx}=1+x

dydx=x2\frac{dy}{dx}=x^2

dydx=x+y\frac{dy}{dx}=x+y

dydx=xy\frac{dy}{dx}=\frac{x}{y}

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Which of the following is the solution to the differential equation dy/dx=(x^2)/y with initial condition y(3)=-2?

y=2e9+x33y=2e^{\frac{-9+x^3}{3}}

y=2e9+x33y=-2e^{\frac{-9+x^3}{3}}

y=2x33y=\sqrt{\frac{2x^3}{3}}

y=2x3314y=\sqrt{\frac{2x^3}{3}-14}

y=2x3314y=-\sqrt{\frac{2x^3}{3}-14}

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Solve the differential equation dy/dx=e^2x in terms of y given the condition that y(0)=0.

y=12e2x+12y=\frac{1}{2}e^{2x}+\frac{1}{2}

y=12e2x12y=\frac{1}{2}e^{2x}-\frac{1}{2}

y=12e2x+13y=\frac{1}{2}e^{2x}+\frac{1}{3}

y=12e2x13y=\frac{1}{2}e^{2x}-\frac{1}{3}

y=12ex12y=\frac{1}{2}e^x-\frac{1}{2}

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Solve the differential equation dy/dx=y/1+x^2 in terms of y given the condition that y(0)=1.

y=ln1+x2y=\ln\left|1+x^2\right|

y=2ln1+x2y=2\ln\left|1+x^2\right|

y=e2arctan(x)y=e^{2\arctan\left(x\right)}

y=earctan(x)y=e^{\arctan\left(x\right)}

y=earctan(2x)y=e^{\arctan\left(2x\right)}

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?