Search Header Logo

Section 6.7: Inverse Function

Authored by Mrs. Larsen

Mathematics

11th - 12th Grade

Used 8+ times

Section 6.7: Inverse Function
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

23 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the inverse of

 f(x)=4x12f\left(x\right)=-4x-12  

 f1(x)=4x3f^{-1}\left(x\right)=4x-3  

 f1(x)=14x+3f^{-1}\left(x\right)=\frac{1}{4}x+3  

 f1(x)=14x3f^{-1}\left(x\right)=-\frac{1}{4}x-3  

 f1(x)=4x3f^{-1}\left(x\right)=-4x-3  

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the inverse of

 f(x)=14x7f\left(x\right)=\frac{1}{4}x-7  

 f1(x)=4x+7f^{-1}\left(x\right)=4x+7  

 f1(x)=4x+28f^{-1}\left(x\right)=-4x+28  

 f1(x)=4x7f^{-1}\left(x\right)=-4x-7  

 f1(x)=4x+28f^{-1}\left(x\right)=4x+28  

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the inverse of

 f(x)=3x5f\left(x\right)=3x-5  

 f1(x)=x+53f^{-1}\left(x\right)=\frac{x+5}{3}  

 f1(x)=3x+5f^{-1}\left(x\right)=3x+5  

 f1(x)=3y5f^{-1}\left(x\right)=3y-5  

 f1(x)=3y+5f^{-1}\left(x\right)=3y+5  

4.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

What does it mean to find the inverse of a function?

the x's and y's are switched

the x's and y's are divided by 2

the x's and y's are made negative

the x's and y's are the same

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Determine if these are Inverse Functions 

 f(x)=10+6x5f\left(x\right)=\frac{10+6x}{5}   and  g(x)=2x+5g\left(x\right)=-2x+5  

Yes, they are Inverse Functions

No, they are NOT Inverse Functions

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Determine if these are Inverse Functions 

 f(x)=4+13xf\left(x\right)=4+\frac{1}{3}x   and  g(x)=3x12g\left(x\right)=3x-12  

Yes, they are Inverse Functions

No, they are NOT Inverse Functions

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Determine if these are Inverse Functions 

 f(x)=7x4f\left(x\right)=-7x-4   and  g(x)=x47g\left(x\right)=\frac{-x-4}{7}  

Yes, they are Inverse Functions

No, they are NOT Inverse Functions

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?