Cinematica del punto

Cinematica del punto

University

11 Qs

quiz-placeholder

Similar activities

Quiz#1 Force 2D

Quiz#1 Force 2D

University

16 Qs

Index Numbers

Index Numbers

University

10 Qs

BASIC HEAT TRANSFER

BASIC HEAT TRANSFER

University

10 Qs

Tebak Nama Makanan

Tebak Nama Makanan

University

10 Qs

Prueba parcial 01 de Física

Prueba parcial 01 de Física

1st Grade - University

6 Qs

14.5 - Divergence and Curl Practice

14.5 - Divergence and Curl Practice

University

14 Qs

FTC as Net Change Accumulator/Trig Integration/FTCII

FTC as Net Change Accumulator/Trig Integration/FTCII

11th Grade - University

14 Qs

APA Referencing

APA Referencing

KG - University

10 Qs

Cinematica del punto

Cinematica del punto

Assessment

Quiz

Other

University

Hard

Created by

Giovanni Bianchi

Used 42+ times

FREE Resource

11 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Media Image

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

Il vettore accelerazione

 aP\overrightarrow{a_P}  nello SPAZIO è uguale a ...

 aP  = d2sdt2n +1ρ(dsdt)2 t\overrightarrow{a_P\ }\ =\ \frac{\text{d}^2s}{\text{d}t^2}\overrightarrow{n\ }+\frac{1}{\rho}\left(\frac{\text{d}s}{\text{d}t}\right)^2\ \overrightarrow{t}  

 aP  = d2sdt2t +1ρ(dsdt)2 n\overrightarrow{a_P\ }\ =\ \frac{\text{d}^2s}{\text{d}t^2}\overrightarrow{t\ }+\frac{1}{\rho}\left(\frac{\text{d}s}{\text{d}t}\right)^2\ \overrightarrow{n}  

 aP  = d2sdt2n +(dsdt)2 t\overrightarrow{a_P\ }\ =\ \frac{\text{d}^2s}{\text{d}t^2}\overrightarrow{n\ }+\left(\frac{\text{d}s}{\text{d}t}\right)^2\ \overrightarrow{t}  

 aP  = d2sdt2t \overrightarrow{a_P\ }\ =\ \frac{\text{d}^2s}{\text{d}t^2}\overrightarrow{t\ }  

3.

MULTIPLE SELECT QUESTION

1 min • 1 pt

Media Image

Il vettore accelerazione

 aP\overrightarrow{a_P}  nel piano è uguale a...

 aP  = d2ρdt2eiθ+ρ (dθdt)2 ei(θ+π)\overrightarrow{a_P\ }\ =\ \frac{\text{d}^2\rho}{\text{d}t^2}e^{i\theta}+\rho\ \left(\frac{\text{d}\theta}{\text{d}t}\right)^2\ e^{i\left(\theta+\pi\right)}  

 aP  = (d2xPdt2)2+(d2yPdt2)2t\overrightarrow{a_P\ }\ =\ \sqrt{\left(\frac{\text{d}^2x_P}{\text{d}t^2}\right)^2+\left(\frac{\text{d}^2y_P}{\text{d}t^2}\right)^2}\overrightarrow{t}  

 aP = aPtt+aPnn\overrightarrow{a_P}\ =\ a_{P^{ }}^t\overrightarrow{t}+a_{P^{ }}^n\overrightarrow{n}  

 aP = dvPdtt +vP2ρn\overrightarrow{a_P}\ =\ \frac{\text{d}v_P}{\text{d}t}\overrightarrow{t}\ +\frac{v_P^2}{\rho}\overrightarrow{n}  

4.

MULTIPLE SELECT QUESTION

30 sec • 1 pt

Media Image

I versori della terna intrinseca sono...

t = vPvP\overrightarrow{t}\ =\ \frac{\overrightarrow{v_P}}{\left|\overrightarrow{v_P}\right|}

n = b ×t\overrightarrow{n}\ =\ \overrightarrow{b}\ \times\overrightarrow{t}

b = t×n\overrightarrow{b}\ =\ \overrightarrow{t}\times\overrightarrow{n}

b = n×t\overrightarrow{b}\ =\ \overrightarrow{n}\times\overrightarrow{t}

5.

MULTIPLE SELECT QUESTION

1 min • 1 pt

Media Image

Il moto rettilineo del punto P nel piano...

aPn = 0\overrightarrow{a_P^n\ }=\ 0

t = i\overrightarrow{t}\ =\ \overrightarrow{i}

t = cos(α)i+sin(α)j\overrightarrow{t}\ =\ \cos\left(\alpha\right)\overrightarrow{i}+\sin\left(\alpha\right)\overrightarrow{j}

aP = (dsdt)2t\overrightarrow{a_P}\ =\ \left(\frac{\text{d}s}{\text{d}t}\right)^2\overrightarrow{t}

6.

MULTIPLE SELECT QUESTION

1 min • 1 pt

Media Image

Il moto circolare uniforme del punto P

s = Rωts\ =\ R\omega t

vP = ρdθdteiθ\overrightarrow{v_P\ }\ =\ \rho\frac{\text{d}\theta}{\text{d}t}e^{i\theta}

vP = Rω\overrightarrow{v_P}\ =\ R\omega

vP = dρdteiθ\overrightarrow{v_P}\ =\ \frac{\text{d}\rho}{\text{d}t}e^{i\theta}

7.

MULTIPLE SELECT QUESTION

1 min • 1 pt

Media Image

Il moto circolare uniforme del punto P

aP = 0\overrightarrow{a_P}\ =\ 0

aP = ωRt+ω2Rn\overrightarrow{a_P}\ =\ \omega R\overrightarrow{t}+\omega^2R\overrightarrow{n}

aP = ω2Rn\overrightarrow{a_P}\ =\ \omega^2R\overrightarrow{n}

aP = ωRt\overrightarrow{a_P}\ =\ \omega R\overrightarrow{t}

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?