Search Header Logo

Z Transforms

Authored by SUGANYA RAMASAMY

Mathematics

University

Used 131+ times

Z Transforms
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Z transforms of unit step function is

zz-a\frac{\text{z}}{\text{z-a}}

zz-1\frac{\text{z}}{\text{z-1}}

1

0

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which of the following is damping rule?

Z{n(f(n))}=zddF(z)Z\left\{n\left(f\left(n\right)\right)\right\}=-z\frac{\text{d}}{\text{d}}F\left(\text{}z\right)

Z{f(nk)}=znF(z)Z\left\{f\left(n-k\right)\right\}=z^{-n}F\left(z\right)

Z{f(n+1)}=zF(z)zf(0)Z\left\{f\left(n+1\right)\right\}=zF\left(z\right)-zf\left(0\right)

Z{anf(n)}=F(za)Z\left\{a^nf\left(n\right)\right\}=F\left(\frac{z}{a}\right)

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 If Z{f(n)}=F(z) then f(0)=limzF(z) is calledIf\ Z\left\{f\left(n\right)\right\}=F\left(z\right)\ then\ f\left(0\right)=\lim_{z\rightarrow\infty}F\left(z\right)\ is\ called  

 First shifting theoremFirst\ shifting\ theorem  

 Second shifting theoremSecond\ shifting\ theorem  

 Initial value theoremInitial\ value\ theorem  

 Final value theoremFinal\ value\ theorem  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The convolution theorem of Z- Transform is

Z1{F(z)G(z)}=f(n)g(n)Z^{-1}\left\{F\left(z\right)G\left(z\right)\right\}=f\left(n\right)\cdot g\left(n\right) Z1{F(z)G(z)}=f(n)g(n)Z^{-1}\left\{F\left(z\right)G\left(z\right)\right\}=f\left(n\right)\cdot g\left(n\right)

Z1{F(z)+G(z)}=f(n)+g(n)Z^{-1}\left\{F\left(z\right)+G\left(z\right)\right\}=f\left(n\right)+g\left(n\right)

Z1{F(z)G(z)}=f(n)g(n)Z^{-1}\left\{F\left(z\right)-G\left(z\right)\right\}=f\left(n\right)-g\left(n\right)

Z1{(F(z)G(z))}=f(n)g(n)Z^{-1}\left\{\left(\frac{F\left(z\right)}{G\left(z\right)}\right)\right\}=\frac{f\left(n\right)}{g\left(n\right)}

5.

FILL IN THE BLANK QUESTION

1 min • 1 pt

What are the types used to solve inverse Z Transform

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 Z[1n]=Z\left[\frac{1}{n}\right]=  

 log(1z1)\log\left(\frac{1}{z-1}\right)  

 log(zz1)\log\left(\frac{z}{z-1}\right)  

 log (1z+1)\log\ \left(\frac{1}{z+1}\right)  

 log(z1)\log\left(z-1\right)  

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 Z{δ(n3)}=Z\left\{\delta\left(n-3\right)\right\}=  

 1z\frac{1}{z}   1z\frac{1}{z} 

 1z2\frac{1}{z^2}  

 1z3\frac{1}{z^3}  

 1zk\frac{1}{z^k}  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?