Search Header Logo

Midpoint and Distance Formula

Authored by Mr Kershaw

Mathematics

9th - 12th Grade

CCSS covered

Used 36+ times

Midpoint and Distance Formula
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Which of the following is the correct midpoint formula given two endpoints (x1, y1) and (x2, y2)?

(x1+x22,y1+y22)\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)

(x1x22,y1y22)\left(\frac{x_1-x_2}{2},\frac{y_1-y_2}{2}\right)

(x1+y12,x2+y22)\left(\frac{x_1+y_1}{2},\frac{x_2+y_2}{2}\right)

(x2x12,y2y12)\left(\frac{x_2-x_1}{2},\frac{y_2-y_1}{2}\right)

Tags

CCSS.HSG.GPE.B.6

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Given two points (x1, y1), (x2, y2) the distance between them is:

d=(x1+y1)2(x2+y2)2d=\sqrt{\left(x_1+y_1\right)^2-\left(x_2+y_2\right)^2}

d=(x1y1)2(x2y2)2d=\sqrt{\left(x_1-y_1\right)^2-\left(x_2-y_2\right)^2}

d=(x1+x2)2(y1+y2)2d=\sqrt{\left(x_1+x_2\right)^2-\left(y_1+y_2\right)^2}

d=(x1x2)2+(y1y2)2d=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}

Tags

CCSS.HSG.GPE.B.7

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

What is the MIDPOINT of the segment?

(3,4)\left(-3,4\right)

(5,4)\left(5,4\right)

(1,4)\left(1,4\right)

(4,1)\left(4,1\right)

Tags

CCSS.HSG.GPE.B.6

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

What is the HORIZONTAL distance between the two points?

-3

8

4

5

9

Tags

CCSS.6.G.A.3

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

What is the MIDPOINT of the segment?

(2,7)\left(2,7\right)

(2,5)\left(2,-5\right)

(1,2)\left(1,2\right)

(2,1)\left(2,1\right)

Tags

CCSS.HSG.GPE.B.6

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

What is the VERTICAL distance between the two points?

12

6

7

2

13

Tags

CCSS.6.G.A.3

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Using the Midpoint Formula, which is the correct setup to find the MIDPOINT for the endpoints:


 (4, 3) and (2, 7)

 (x1+x22,y1+y22)=(4+22,3+72)\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)=\left(\frac{4+2}{2},\frac{3+7}{2}\right)  

 (x1+x22,y1+y22)=(4+32,2+72)\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)=\left(\frac{4+3}{2},\frac{2+7}{2}\right)  

 (x1+x22,y1+y22)=(3+72,4+22)\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)=\left(\frac{3+7}{2},\frac{4+2}{2}\right)  

Tags

CCSS.HSG.GPE.B.6

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?