Double integral in polar coordinates

Double integral in polar coordinates

University

5 Qs

quiz-placeholder

Similar activities

Double-Angle Trig Identities

Double-Angle Trig Identities

10th Grade - University

10 Qs

Integration Part 1

Integration Part 1

11th Grade - University

10 Qs

4.4 Double Integrals in Polar Form

4.4 Double Integrals in Polar Form

University

4 Qs

Final Exam-Calculus

Final Exam-Calculus

12th Grade - University

10 Qs

Cálculo integral U1

Cálculo integral U1

University

10 Qs

Coordenadas polares

Coordenadas polares

University

4 Qs

de Moivre's Theorem

de Moivre's Theorem

12th Grade - University

10 Qs

The area bounded by a polar curve

The area bounded by a polar curve

12th Grade - University

8 Qs

Double integral in polar coordinates

Double integral in polar coordinates

Assessment

Quiz

Mathematics

University

Medium

CCSS
HSN.CN.B.4

Standards-aligned

Created by

-- --

Used 30+ times

FREE Resource

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Determine the intervals for  rr   and  θ\theta  associated with the blue region.

 3r4, 0θπ3\le r\le4,\ 0\le\theta\le\pi  

 2r4, 0θπ42\le r\le4,\ 0\le\theta\le\frac{\pi}{4}  

 πrπ4, 1θ4\pi\le r\le\frac{\pi}{4},\ 1\le\theta\le4  

 2r4, π4θπ2\le r\le4,\ \frac{\pi}{4}\le\theta\le\pi  

Tags

CCSS.HSN.CN.B.4

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Formula for the double integral in polar coordinates is

f((r,θ))r drdθ\int_{ }^{ }\int_{ }^{ }f\left(\left(r,\theta\right)\right)r\ drd\theta

f(x,y) dA\int_{ }^{ }\int_{ }^{ }f\left(x,y\right)\ dA

f((r,θ))dθ dr\int_{ }^{ }\int_{ }^{ }f\left(\left(r,\theta\right)\right)d\theta\ dr

f((r,θ))θ drdθ\int_{ }^{ }\int_{ }^{ }f\left(\left(r,\theta\right)\right)\theta\ drd\theta

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Convert  012x1x2(3x +4y2) dydx\int_0^{\frac{1}{\sqrt{2}}}\int_x^{\sqrt{1-x^2}}\left(3x\ +4y^2\right)\ dydx  into polar coordinates

 0π4013r+4rsinθ drdθ\int_0^{\frac{\pi}{4}}\int_0^13r+4r\sin\theta\ drd\theta  

 π4π201r2(3cosθ+4rsin2θ)drdθ\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\int_0^1r^2\left(3\cos\theta+4r\sin^2\theta\right)drd\theta  

 0π2013rcosθ+4r2sin2θ drdθ\int_0^{\frac{\pi}{2}}\int_0^13r\cos\theta+4r^2\sin^2\theta\ drd\theta  

 π3π2013cosθ+4r2sin2θ r drdθ\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\int_0^13\cos\theta+4r^2\sin^2\theta\ r\ drd\theta  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

R is the region in the upper half-plane bounded by the circles

 x2+y2=1x^2+y^2=1   and  x2+y2=4x^2+y^2=4  . Find the area of R

 π2\frac{\pi}{2}  

 3π2\frac{3\pi}{2}  

 2π2\pi  

 5π2\frac{5\pi}{2}  

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Find the volume of the solid bounded by the plane z = 0 and the paraboloid z=1x2y2z=1-x^2-y^2 


 π2\frac{\pi}{2}  

 π5\frac{\pi}{5}  

 π3\frac{\pi}{3}  

 π4\frac{\pi}{4}