Cinematica dei sistemi di corpi rigidi

Cinematica dei sistemi di corpi rigidi

University

11 Qs

quiz-placeholder

Similar activities

Vektor-3

Vektor-3

9th Grade - University

11 Qs

PHB 2 MATEMATIKA PEMINATAN KELAS X MIPA

PHB 2 MATEMATIKA PEMINATAN KELAS X MIPA

12th Grade - University

10 Qs

Equations of Lines & Planes

Equations of Lines & Planes

12th Grade - University

13 Qs

THEORY ASSIGNMENT 1 DUM20132 MAY-OCT 2021 (UNIT 2 - SET 2)

THEORY ASSIGNMENT 1 DUM20132 MAY-OCT 2021 (UNIT 2 - SET 2)

12th Grade - University

10 Qs

Operasi Vektor

Operasi Vektor

12th Grade - University

15 Qs

Cinematica del corpo rigido

Cinematica del corpo rigido

University

11 Qs

Dinamica del corpo rigido e attrito

Dinamica del corpo rigido e attrito

University

11 Qs

VEKTOR

VEKTOR

8th Grade - University

15 Qs

Cinematica dei sistemi di corpi rigidi

Cinematica dei sistemi di corpi rigidi

Assessment

Quiz

Mathematics

University

Hard

Created by

Giovanni Bianchi

Used 40+ times

FREE Resource

11 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Dove si trova, in questo atto di moto, il CIR della biella BC?

A

B

C

\infty

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Dove si trova in questo atto di moto il CIR della biella BC?

A

B

C

\infty

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

In questo atto di moto...

vC = vB\overrightarrow{v_C\ }\ =\ \overrightarrow{v_B}

vC = 0\overrightarrow{v_C\ }\ =\ 0

vC = vc, maxi\overrightarrow{v_C\ }\ =\ \left|v_{c,\ \max}\right|\overrightarrow{i}

vC = vc, maxi\overrightarrow{v_C\ }\ =\ -\left|v_{c,\ \max}\right|\overrightarrow{i}

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

In questo atto di moto...

aC = aB\overrightarrow{a_C}\ =\ \overrightarrow{a_B}

aC = 0\overrightarrow{a_C}\ =\ 0

aC = aC,maxi\overrightarrow{a_C}\ =\ \left|a_{C,\max}\right|\overrightarrow{i}

aC = aC,maxi\overrightarrow{a_C}\ =-\ \left|a_{C,\max}\right|\overrightarrow{i}

5.

MULTIPLE SELECT QUESTION

1 min • 1 pt

Media Image

Per il sistema rappresentato in figura

La traiettoria di G è una circonferenza

aB = aC\overrightarrow{a_B}\ =\ \overrightarrow{a_C}

ωAB = ωCD\overrightarrow{\omega_{AB}}\ =-\ \overrightarrow{\omega_{CD}}

dωABdt = dωCDdt\frac{\text{d}\overrightarrow{\omega_{AB}}}{\text{d}t}\ =\ \frac{\text{d}\overrightarrow{\omega_{CD}}}{\text{d}t}

6.

MULTIPLE SELECT QUESTION

1 min • 1 pt

Media Image

Per il sistema rappresentato in figura, in questo atto di moto...

vB = vC\overrightarrow{v_B\ }\ =\ \overrightarrow{v_C}

dωBCdt = 0\frac{\text{d}\overrightarrow{\omega_{BC}}}{\text{d}t}\ =\ 0

ωAB = ωCD\overrightarrow{\omega_{AB}}\ =\ \overrightarrow{\omega_{CD}}

aB = aC\overrightarrow{a_B}\ =\ \overrightarrow{a_C}

7.

MULTIPLE SELECT QUESTION

2 mins • 1 pt

Media Image

Per il sistema rappresentato in figura, considerando un sistema di riferimento relativo traslante con origine in B...

La traiettoria di C è rettilinea

vC,tr (BA)\overrightarrow{v_{C,tr}}\ \ \ \perp\ \left(B-A\right)

vC,tr (CA)\overrightarrow{v_{C,tr}}\ \ \ \perp\ \left(C-A\right)

vC,rel (CB)\overrightarrow{v_{C,rel}\ }\ \parallel\ \left(C-B\right)

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?