Search Header Logo

10.5 Solving Trig Equations

Authored by Sara Korotkow

Mathematics

9th - 12th Grade

CCSS covered

Used 21+ times

10.5 Solving Trig Equations
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

12 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

How many solutions does the following equation have on the given interval?

 sinx=12\sin x=\frac{1}{2}  when  0x<2π0\le x<2\pi  

0

1

2

4

Tags

CCSS.HSF.TF.B.7

2.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

How many solutions does the following equation have on the given interval?

 tan2x=3\tan^2x=3  when  0x<2π0\le x<2\pi  

0

1

2

4

Tags

CCSS.HSF.TF.B.7

3.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 cosx+cos2x=0\cos x+\cos^2x=0  

What method would you use to solve the equation?

greatest common factor

cancel cosines

combine like terms

square roots

Tags

CCSS.HSF.TF.B.7

4.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

Solve cosx+cos2x=0\cos x+\cos^2x=0  on the interval  πx<3π2\pi\le x<\frac{3\pi}{2}  


 π2\frac{\pi}{2}  

 3π2\frac{3\pi}{2} 

 π\pi  

 5π4\frac{5\pi}{4}  

Tags

CCSS.HSF.TF.B.7

5.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 cot2x2cotx+1=0\cot^2x-2\cot x+1=0  

What method would you use to solve the equation?

square roots

combining like terms

factoring

trig identities

Tags

CCSS.HSA-REI.B.4B

6.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 cot2x2cotx+1=0\cot^2x-2\cot x+1=0  

Solve on the interval  πx<2π\pi\le x<2\pi  

 π4\frac{\pi}{4}  

 3π4\frac{3\pi}{4}  

 5π4\frac{5\pi}{4}  

 7π4\frac{7\pi}{4}  

Tags

CCSS.HSF.TF.B.7

7.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 2sin2x=22\sin^2x=2  

What method would you use to solve the equation?

square roots

combining like terms

factoring

trig identities

Tags

CCSS.HSF.TF.B.7

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?