AP Calculus AB - Important Formulas/Theorems

AP Calculus AB - Important Formulas/Theorems

11th - 12th Grade

16 Qs

quiz-placeholder

Similar activities

Derivadas

Derivadas

12th Grade

16 Qs

Properties of Rational Functions

Properties of Rational Functions

10th - 12th Grade

20 Qs

Distancia entre dos puntos

Distancia entre dos puntos

12th Grade

11 Qs

DERIVATE ELEMENTARI

DERIVATE ELEMENTARI

12th Grade

16 Qs

Dấu của tam thức bậc hai

Dấu của tam thức bậc hai

10th - 12th Grade

15 Qs

Algebra 2 Pre-Test

Algebra 2 Pre-Test

10th Grade - University

14 Qs

قواعد الاشتقاق

قواعد الاشتقاق

11th - 12th Grade

12 Qs

ÔN BẢNG NGUYÊN HÀM

ÔN BẢNG NGUYÊN HÀM

12th Grade

15 Qs

AP Calculus AB - Important Formulas/Theorems

AP Calculus AB - Important Formulas/Theorems

Assessment

Quiz

Mathematics

11th - 12th Grade

Medium

CCSS
HSG.GMD.A.3, HSF.IF.C.7, HSF.IF.B.6

+6

Standards-aligned

Created by

Aaron Jameson

Used 316+ times

FREE Resource

16 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

Which of these is the definition of a derivative?

limh0 f(x+h)f(x)h\lim_{h\rightarrow0}\ \frac{f\left(x+h\right)-f\left(x\right)}{h}

limh0 f(h)f(x)h\lim_{h\rightarrow0}\ \frac{f\left(h\right)-f\left(x\right)}{h}

limh0 f(x+h)+f(x)h\lim_{h\rightarrow0}\ \frac{f\left(x+h\right)+f\left(x\right)}{h}

limh0 f(h)+f(x)h\lim_{h\rightarrow0}\ \frac{f\left(h\right)+f\left(x\right)}{h}

2.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

The intermediate value theorem (IVT) is primarily concerned with which of the following?

y-values

first derivative values

second derivative values

x-values

Tags

CCSS.HSF.IF.B.4

CCSS.HSF.IF.C.7

3.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

Which of these sums up the Mean Value Theorem (MVT)?

f(c)=f(b)f(a)baf'\left(c\right)=\frac{f\left(b\right)-f\left(a\right)}{b-a}

f(c)=f(b)f(a)baf\left(c\right)=\frac{f\left(b\right)-f\left(a\right)}{b-a}

f(c)=f(b)f(a)baf\left(c\right)=\frac{f'\left(b\right)-f'\left(a\right)}{b-a}

f(c)=f(b)f(a)baf'\left(c\right)=\frac{f'\left(b\right)-f'\left(a\right)}{b-a}

Tags

CCSS.HSF.IF.B.6

4.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

Which of these is NOT a hypothesis of the Mean Value Theorem (MVT)?

A closed interval

A differentiable function

A continuous function

A twice-differentiable function

5.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

Tangent line formula.

yf(x1)=f(x1)(xx1)y-f\left(x_1\right)=f'\left(x_1\right)\left(x-x_1\right)

y=f(x1)(xx1)y=f'\left(x_1\right)\left(x-x_1\right)

yf(y1)=f(x1)(xx1)y-f\left(y_1\right)=f'\left(x_1\right)\left(x-x_1\right)

y=f(x1)(xx1)y=f\left(x_1\right)\left(x-x_1\right)

Tags

CCSS.HSF.IF.B.4

CCSS.HSF.IF.C.7

6.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

The fundamental theorem of calculus.

abf(x)=F(b)F(a) \int_a^bf\left(x\right)=F\left(b\right)-F\left(a\right)\ where F is the antiderivative

abf(x)=f(b)f(a) \int_a^bf\left(x\right)=f'\left(b\right)-f'\left(a\right)\

abF(x)=f(b)f(a) \int_a^bF\left(x\right)=f\left(b\right)-f\left(a\right)\ where F is the antiderivative

abF(x)=f(b)f(a) \int_a^bF\left(x\right)=f'\left(b\right)-f'\left(a\right)\ where F is the antiderivative

Tags

CCSS.HSF.IF.A.2

7.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

The fundamental theorem of calculus.

ddx0xf(t)dt=f(x)\frac{d}{dx}\int_0^xf\left(t\right)dt=f\left(x\right)

ddx0xf(t)dt=F(x)\frac{d}{dx}\int_0^xf\left(t\right)dt=F\left(x\right) where F is the antiderivative

ddx0xF(t)dt=f(x)\frac{d}{dx}\int_0^xF\left(t\right)dt=f\left(x\right) where F is the antiderivative

ddx0xf(t)dt=f(x)\frac{d}{dx}\int_0^xf\left(t\right)dt=f'\left(x\right)

Tags

CCSS.HSF.IF.C.7

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?