AP Calculus AB - Important Formulas/Theorems

AP Calculus AB - Important Formulas/Theorems

11th - 12th Grade

16 Qs

quiz-placeholder

Similar activities

Funciones crecientes y decrecientes

Funciones crecientes y decrecientes

11th Grade

13 Qs

Limits Practice!

Limits Practice!

11th - 12th Grade

12 Qs

AP Calculus AB

AP Calculus AB

11th - 12th Grade

20 Qs

Properties of Rational Functions

Properties of Rational Functions

10th - 12th Grade

20 Qs

Equations of Tangent & Normal Lines

Equations of Tangent & Normal Lines

11th - 12th Grade

11 Qs

Evaluation of Functions

Evaluation of Functions

11th Grade

15 Qs

Algebra 2 Pre-Test

Algebra 2 Pre-Test

10th Grade - University

14 Qs

ÔN BẢNG NGUYÊN HÀM

ÔN BẢNG NGUYÊN HÀM

12th Grade

15 Qs

AP Calculus AB - Important Formulas/Theorems

AP Calculus AB - Important Formulas/Theorems

Assessment

Quiz

Mathematics

11th - 12th Grade

Medium

CCSS
HSG.GMD.A.3, HSF.IF.C.7, HSF.IF.B.6

+6

Standards-aligned

Created by

Aaron Jameson

Used 314+ times

FREE Resource

16 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

Which of these is the definition of a derivative?

limh0 f(x+h)f(x)h\lim_{h\rightarrow0}\ \frac{f\left(x+h\right)-f\left(x\right)}{h}

limh0 f(h)f(x)h\lim_{h\rightarrow0}\ \frac{f\left(h\right)-f\left(x\right)}{h}

limh0 f(x+h)+f(x)h\lim_{h\rightarrow0}\ \frac{f\left(x+h\right)+f\left(x\right)}{h}

limh0 f(h)+f(x)h\lim_{h\rightarrow0}\ \frac{f\left(h\right)+f\left(x\right)}{h}

2.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

The intermediate value theorem (IVT) is primarily concerned with which of the following?

y-values

first derivative values

second derivative values

x-values

Tags

CCSS.HSF.IF.B.4

CCSS.HSF.IF.C.7

3.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

Which of these sums up the Mean Value Theorem (MVT)?

f(c)=f(b)f(a)baf'\left(c\right)=\frac{f\left(b\right)-f\left(a\right)}{b-a}

f(c)=f(b)f(a)baf\left(c\right)=\frac{f\left(b\right)-f\left(a\right)}{b-a}

f(c)=f(b)f(a)baf\left(c\right)=\frac{f'\left(b\right)-f'\left(a\right)}{b-a}

f(c)=f(b)f(a)baf'\left(c\right)=\frac{f'\left(b\right)-f'\left(a\right)}{b-a}

Tags

CCSS.HSF.IF.B.6

4.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

Which of these is NOT a hypothesis of the Mean Value Theorem (MVT)?

A closed interval

A differentiable function

A continuous function

A twice-differentiable function

5.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

Tangent line formula.

yf(x1)=f(x1)(xx1)y-f\left(x_1\right)=f'\left(x_1\right)\left(x-x_1\right)

y=f(x1)(xx1)y=f'\left(x_1\right)\left(x-x_1\right)

yf(y1)=f(x1)(xx1)y-f\left(y_1\right)=f'\left(x_1\right)\left(x-x_1\right)

y=f(x1)(xx1)y=f\left(x_1\right)\left(x-x_1\right)

Tags

CCSS.HSF.IF.B.4

CCSS.HSF.IF.C.7

6.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

The fundamental theorem of calculus.

abf(x)=F(b)F(a) \int_a^bf\left(x\right)=F\left(b\right)-F\left(a\right)\ where F is the antiderivative

abf(x)=f(b)f(a) \int_a^bf\left(x\right)=f'\left(b\right)-f'\left(a\right)\

abF(x)=f(b)f(a) \int_a^bF\left(x\right)=f\left(b\right)-f\left(a\right)\ where F is the antiderivative

abF(x)=f(b)f(a) \int_a^bF\left(x\right)=f'\left(b\right)-f'\left(a\right)\ where F is the antiderivative

Tags

CCSS.HSF.IF.A.2

7.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

The fundamental theorem of calculus.

ddx0xf(t)dt=f(x)\frac{d}{dx}\int_0^xf\left(t\right)dt=f\left(x\right)

ddx0xf(t)dt=F(x)\frac{d}{dx}\int_0^xf\left(t\right)dt=F\left(x\right) where F is the antiderivative

ddx0xF(t)dt=f(x)\frac{d}{dx}\int_0^xF\left(t\right)dt=f\left(x\right) where F is the antiderivative

ddx0xf(t)dt=f(x)\frac{d}{dx}\int_0^xf\left(t\right)dt=f'\left(x\right)

Tags

CCSS.HSF.IF.C.7

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?