AP Calculus AB - Important Formulas/Theorems

AP Calculus AB - Important Formulas/Theorems

11th - 12th Grade

16 Qs

quiz-placeholder

Similar activities

Елементи математитчної статистики

Елементи математитчної статистики

11th Grade

18 Qs

Evaluación de Lógica

Evaluación de Lógica

12th Grade - University

20 Qs

DETERMINANTS

DETERMINANTS

12th Grade

11 Qs

Quiz 13

Quiz 13

9th - 12th Grade

20 Qs

Review-Analisis Bivariat

Review-Analisis Bivariat

11th Grade

11 Qs

uh 1. barisan dan deret

uh 1. barisan dan deret

11th - 12th Grade

15 Qs

MATH KUIZ

MATH KUIZ

10th - 12th Grade

20 Qs

Polonomial Kelas 11

Polonomial Kelas 11

11th Grade

11 Qs

AP Calculus AB - Important Formulas/Theorems

AP Calculus AB - Important Formulas/Theorems

Assessment

Quiz

Mathematics

11th - 12th Grade

Practice Problem

Medium

CCSS
HSG.GMD.A.3, HSF.IF.C.7, HSF.IF.B.6

+6

Standards-aligned

Created by

Aaron Jameson

Used 325+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

16 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

Which of these is the definition of a derivative?

limh0 f(x+h)f(x)h\lim_{h\rightarrow0}\ \frac{f\left(x+h\right)-f\left(x\right)}{h}

limh0 f(h)f(x)h\lim_{h\rightarrow0}\ \frac{f\left(h\right)-f\left(x\right)}{h}

limh0 f(x+h)+f(x)h\lim_{h\rightarrow0}\ \frac{f\left(x+h\right)+f\left(x\right)}{h}

limh0 f(h)+f(x)h\lim_{h\rightarrow0}\ \frac{f\left(h\right)+f\left(x\right)}{h}

2.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

The intermediate value theorem (IVT) is primarily concerned with which of the following?

y-values

first derivative values

second derivative values

x-values

Tags

CCSS.HSF.IF.B.4

CCSS.HSF.IF.C.7

3.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

Which of these sums up the Mean Value Theorem (MVT)?

f(c)=f(b)f(a)baf'\left(c\right)=\frac{f\left(b\right)-f\left(a\right)}{b-a}

f(c)=f(b)f(a)baf\left(c\right)=\frac{f\left(b\right)-f\left(a\right)}{b-a}

f(c)=f(b)f(a)baf\left(c\right)=\frac{f'\left(b\right)-f'\left(a\right)}{b-a}

f(c)=f(b)f(a)baf'\left(c\right)=\frac{f'\left(b\right)-f'\left(a\right)}{b-a}

Tags

CCSS.HSF.IF.B.6

4.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

Which of these is NOT a hypothesis of the Mean Value Theorem (MVT)?

A closed interval

A differentiable function

A continuous function

A twice-differentiable function

5.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

Tangent line formula.

yf(x1)=f(x1)(xx1)y-f\left(x_1\right)=f'\left(x_1\right)\left(x-x_1\right)

y=f(x1)(xx1)y=f'\left(x_1\right)\left(x-x_1\right)

yf(y1)=f(x1)(xx1)y-f\left(y_1\right)=f'\left(x_1\right)\left(x-x_1\right)

y=f(x1)(xx1)y=f\left(x_1\right)\left(x-x_1\right)

Tags

CCSS.HSF.IF.B.4

CCSS.HSF.IF.C.7

6.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

The fundamental theorem of calculus.

abf(x)=F(b)F(a) \int_a^bf\left(x\right)=F\left(b\right)-F\left(a\right)\ where F is the antiderivative

abf(x)=f(b)f(a) \int_a^bf\left(x\right)=f'\left(b\right)-f'\left(a\right)\

abF(x)=f(b)f(a) \int_a^bF\left(x\right)=f\left(b\right)-f\left(a\right)\ where F is the antiderivative

abF(x)=f(b)f(a) \int_a^bF\left(x\right)=f'\left(b\right)-f'\left(a\right)\ where F is the antiderivative

Tags

CCSS.HSF.IF.A.2

7.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

The fundamental theorem of calculus.

ddx0xf(t)dt=f(x)\frac{d}{dx}\int_0^xf\left(t\right)dt=f\left(x\right)

ddx0xf(t)dt=F(x)\frac{d}{dx}\int_0^xf\left(t\right)dt=F\left(x\right) where F is the antiderivative

ddx0xF(t)dt=f(x)\frac{d}{dx}\int_0^xF\left(t\right)dt=f\left(x\right) where F is the antiderivative

ddx0xf(t)dt=f(x)\frac{d}{dx}\int_0^xf\left(t\right)dt=f'\left(x\right)

Tags

CCSS.HSF.IF.C.7

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?