AP Calculus BC Parametrics, Vector & Polar Formulas

AP Calculus BC Parametrics, Vector & Polar Formulas

11th Grade - University

18 Qs

quiz-placeholder

Similar activities

Kedudukan Lingkaran & Persamaan Garis singgung Lingkaran

Kedudukan Lingkaran & Persamaan Garis singgung Lingkaran

11th Grade

20 Qs

Conversion Metric to Metric

Conversion Metric to Metric

7th Grade - University

20 Qs

logarithms & index

logarithms & index

10th - 12th Grade

20 Qs

START UP ACT.11th -1st TERM

START UP ACT.11th -1st TERM

11th Grade

15 Qs

Limits Skill Assessment 1

Limits Skill Assessment 1

12th Grade

20 Qs

Transformations

Transformations

8th - 12th Grade

20 Qs

HELLO TRANS GEO

HELLO TRANS GEO

11th Grade

20 Qs

AP Calculus BC Parametrics, Vector & Polar Formulas

AP Calculus BC Parametrics, Vector & Polar Formulas

Assessment

Quiz

Mathematics

11th Grade - University

Medium

CCSS
HSN.CN.B.4, HSN.VM.A.1, HSF-IF.C.7D

Standards-aligned

Created by

Stephanie Hontz

Used 11+ times

FREE Resource

18 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

For differentiable parametric functions,  y\left(t\right)\ \&\ x\left(t\right) , the first derivative  y(x)=dydxy'\left(x\right)=\frac{\text{d}y}{\text{d}x}  is

 dxdt\frac{\text{d}x}{\text{d}t}  

 dydtdxdt where dxdt0\frac{\frac{\text{d}y}{\text{d}t}}{\frac{\text{d}x}{\text{d}t}}\ where\ \frac{\text{d}x}{\text{d}t}\ne0  

 dydt\frac{\text{d}y}{\text{d}t}  

 dxdtdydtwhere dydt0\frac{\frac{\text{d}x}{\text{d}t}}{\frac{\text{d}y}{\text{d}t}}where\ \frac{\text{d}y}{\text{d}t}\ne0  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

For differentiable parametric functions,  y\left(t\right)\ \&\ x\left(t\right) , the second derivative  d2ydx2\frac{\text{d}^2y}{\text{d}x^2}  is

 d(dydt)dt\frac{\text{d}\left(\frac{dy}{dt}\right)}{\text{d}t}  

 dydtdxdt where dxdt0\frac{\frac{\text{d}y}{\text{d}t}}{\frac{\text{d}x}{\text{d}t}}\ where\ \frac{\text{d}x}{\text{d}t}\ne0  

 d2ydt2\frac{\text{d}^2y}{\text{d}t^2}  

 dydtdxdtwhere y=dydx and dxdt0\frac{\frac{\text{d}y'}{\text{d}t}}{\frac{\text{d}x}{\text{d}t}}where\ y'=\frac{\text{d}y}{\text{d}x}\ and\ \frac{\text{d}x}{\text{d}t}\ne0  

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The length of a parametric curve defined by continuous and differentiable functions  y\left(t\right)\ and\ x\left(t\right) , on the interval  atba\le t\le b , is: 

 L=x(t)2+y(t)2L=\sqrt{x\left(t\right)^2+y\left(t\right)^2}  

 L=(dxdt)2+(dydt)2L=\sqrt{\left(\frac{\text{d}x}{\text{d}t}\right)^2+\left(\frac{\text{d}y}{\text{dt}}\right)^2}  

 L=ab(dxdt)2+(dydt)2dtL=\int_a^b\sqrt{\left(\frac{\text{d}x}{\text{d}t}\right)^2+\left(\frac{\text{d}y}{\text{dt}}\right)^2}dt  

 L=abx(t)2+y(t)2dtL=\int_a^b\sqrt{x\left(t\right)^2+y\left(\text{t}\right)^2}dt  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The magnitude, or absolute value, of the vector   <x, y><x,\ y> is: 

 <x,y>=x2+y2\left|<x,y>\right|=\sqrt{x^2+y^2}  

 <x,y>(dxdt)2+(dydt)2\left|<x,y>\right|\sqrt{\left(\frac{\text{d}x}{\text{d}t}\right)^2+\left(\frac{\text{d}y}{\text{dt}}\right)^2}  

 <x,y>=ab(x(t))2+(y(t))2dt\left|<x,y>\right|=\int_a^b\sqrt{\left(x'\left(t\right)\right)^2+\left(y'\left(t\right)\right)^2}dt  

 <x,y>abx(t)2+y(t)2dt\left|<x,y>\right|\int_a^b\sqrt{x\left(t\right)^2+y\left(\text{t}\right)^2}dt  

Tags

CCSS.HSN.VM.A.1

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 r(t)=<x(t),y(t)>\overrightarrow{r}\left(t\right)=<x\left(t\right),y\left(t\right)>  , for differentiable  x(t),  y(t)x\left(t\right),\ \ y\left(t\right)  

position vector r(t)

velocity vector r(t)

velocity vector v(t)

acceleration vector a(t)

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 v(t)=<dxdt,dydt>\overrightarrow{v}\left(t\right)=<\frac{\text{d}x}{\text{d}t},\frac{\text{d}y}{\text{d}t}>  , for differentiable  x(t),  y(t)x\left(t\right),\ \ y\left(t\right)  

position vector r(t)

position vector v(t)

velocity vector v(t)

acceleration vector a(t)

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 a(t)=<d2xdt2,d2ydt2>\overrightarrow{a}\left(t\right)=<\frac{\text{d}^2x}{\text{d}t^2},\frac{\text{d}^2y}{\text{d}t^2}>  , for differentiable  x(t),  y(t)x\left(t\right),\ \ y\left(t\right)  

position vector a(t)

velocity vector a(t)

velocity vector v(t)

acceleration vector a(t)

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?