Cuestionario Cálculo I

Cuestionario Cálculo I

1st - 6th Grade

6 Qs

quiz-placeholder

Similar activities

2o EXAMEN PARCIAL CÁLCULO INTEGRAL

2o EXAMEN PARCIAL CÁLCULO INTEGRAL

1st Grade

10 Qs

Derivadas trascendentes

Derivadas trascendentes

1st Grade

8 Qs

Tablične derivacije

Tablične derivacije

4th Grade

10 Qs

Ulangan Harian TURUNAN FUNGSI TRIGONOMETRI

Ulangan Harian TURUNAN FUNGSI TRIGONOMETRI

1st Grade

10 Qs

Differentiation

Differentiation

5th Grade

10 Qs

Reglas de Derivación y Derivadas Elementales

Reglas de Derivación y Derivadas Elementales

1st Grade

10 Qs

Propiedades de Derivadas I

Propiedades de Derivadas I

1st Grade - Professional Development

9 Qs

Integrales por cambio de variable

Integrales por cambio de variable

1st Grade

8 Qs

Cuestionario Cálculo I

Cuestionario Cálculo I

Assessment

Quiz

Other, Mathematics

1st - 6th Grade

Hard

Created by

Francisca Díaz

Used 5+ times

FREE Resource

6 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Sabiendo que y=f(x)y=f\left(x\right)  y que  f(x)=g(x)h(x)f\left(x\right)=g\left(x\right)^{h\left(x\right)}  , determine  yy'  

 y=h(x)g(x)g(x) +ln(g(x))h(x)f(x)y'=\frac{h'\left(x\right)g'\left(x\right)}{g\left(x\right)}\ +\ln\left(g'\left(x\right)\right)\cdot h'\left(x\right)\cdot f\left(x\right)  

 y=h(x)g(x)g(x)+ln(g(x))h(x)y'=\frac{h\left(x\right)g'\left(x\right)}{g\left(x\right)}+\ln\left(g\left(x\right)\right)\cdot h'\left(x\right)  

 y=[h(x)g(x)g(x)+ln(g(x))h(x)]f(x)y'=\left[\frac{h\left(x\right)g'\left(x\right)}{g\left(x\right)}+\ln\left(g\left(x\right)\right)\cdot h'\left(x\right)\right]f\left(x\right)  

 y=[h(x)g(x)g(x)+ln(g(x))h(x)]f(x)y'=\left[\frac{h\left(x\right)g'\left(x\right)}{g\left(x\right)}+\ln\left(g\left(x\right)\right)\cdot h'\left(x\right)\right]f'\left(x\right)  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Si  f(x)=ln(ex+1  )f\left(x\right)=\ln\left(e^{x+1\ \ }\right)  , entonces  f(x)=f'\left(x\right)=  

0

1

 ln(ex+1)(x+1)\ln\left(e^{x+1}\right)\cdot\left(x+1\right)  

No tiene solución

3.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Si g(x)=cos(x2+6x)g\left(x\right)=\cos\left(x^2+6x\right)  , determine  g(1)g'\left(1\right)  


 8sen(7)8\cdot sen(7)  

 8sen(7)-8\cdot sen(7)  

 7sen(8)-7\cdot sen(8)  

 8sen(7)8\cdot sen(-7)  

4.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Sea f(x)= ln(2x2+6x1)f\left(x\right)=\ \ln\left(2x^2+6x-1\right)  , calcule  f(4)f'\left(4\right)  .


 2155\frac{21}{55}  

 2256\frac{22}{56}  

 25\frac{2}{5}  

 56\frac{5}{6}  

5.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Sea  h(θ) = θ(1θ)3 h\left(\theta\right)\ =\ \frac{\theta}{\left(1-\theta\right)^3}\  , calcula  \frac{\text{d}\ h\left(\theta\right)}{\text{d}\ \theta} .

 (1+2 θ)(1θ)4\left(1+2\ \theta\right)\cdot\left(1-\theta\right)^{-4}  

 (1+2 θ)(1θ)4\left(1+2\ \theta\right)\cdot\left(1-\theta\right)^4  

 (12θ)(θ1)4\frac{\left(-1-2\theta\right)}{\left(\theta-1\right)^4}  

 (1+2θ)(θ1)4\frac{\left(-1+2\theta\right)}{\left(\theta-1\right)^4}  

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Calcule la derivada de la siguiente función : f(x)=2x3  1ln(sen 2(x))f\left(x\right)=\frac{2x^{3\ }-\ 1}{\ln\left(sen\ ^2\left(x\right)\right)}  


 6x2ln(sen2(x))cot(x)cos(x)(2x21)ln2(sen2(x))\frac{6x^2\cdot\ln\left(sen^2\left(x\right)\right)-\cot\left(x\right)\cdot\cos\left(x\right)\cdot\left(2x^2-1\right)}{\ln^2\left(sen^2\left(x\right)\right)}  

 6x2ln(sen2(x))cos(x)(2x31)ln2(sen2(x))\frac{6x^2\cdot\ln\left(sen^2\left(x\right)\right)-\cos\left(x\right)\cdot\left(2x^3-1\right)}{\ln^2\left(sen^2\left(x\right)\right)}  

 6x2ln(sen(x))cot(x)(2x31)ln(sen(x))\frac{6x^2\cdot\ln\left(sen\left(x\right)\right)-\cot\left(x\right)\cdot\left(2x^3-1\right)}{\ln\left(sen\left(x\right)\right)}  

 6x2ln(sen(x))cot(x)(2x31)2ln2(sen(x))\frac{6x^2\cdot\ln\left(sen\left(x\right)\right)-\cot\left(x\right)\cdot\left(2x^3-1\right)}{2\ln^2\left(sen\left(x\right)\right)}