Reglas de Derivación y Derivadas Elementales

Reglas de Derivación y Derivadas Elementales

1st Grade

10 Qs

quiz-placeholder

Similar activities

BILANGAN BERPANGKAT

BILANGAN BERPANGKAT

1st - 3rd Grade

12 Qs

Mental math Grade 1 15.1.21

Mental math Grade 1 15.1.21

1st Grade

15 Qs

Математика

Математика

1st Grade - University

7 Qs

Sumas

Sumas

1st - 2nd Grade

10 Qs

7.1 Ketaksamaan Linear

7.1 Ketaksamaan Linear

1st - 3rd Grade

15 Qs

Ôn bảng nhân 4

Ôn bảng nhân 4

1st Grade

10 Qs

Wyrażenia algebraiczne

Wyrażenia algebraiczne

1st - 4th Grade

12 Qs

Mastery Test - 2nd Trimester

Mastery Test - 2nd Trimester

1st - 2nd Grade

10 Qs

Reglas de Derivación y Derivadas Elementales

Reglas de Derivación y Derivadas Elementales

Assessment

Quiz

Mathematics

1st Grade

Hard

Created by

J Atilio Guerrero

Used 1+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Si   ff  y  gg  son funciones diferenciables, entonces   f. gf.\ g  es diferenciable y   [f(x).g(x)] =\left[f\left(x\right).g\left(x\right)\right]'\ =  

 f(x).g(x)f'\left(x\right).g'\left(x\right)  

 f(x)g(x)f(x)g(x)f'\left(x\right)g\left(x\right)-f\left(x\right)g'\left(x\right)  

 g(x)f(x)+g(x)f(x)g'\left(x\right)f\left(x\right)+g\left(x\right)f'\left(x\right)  

 f(x)g(x)+f(x)g(x)f'\left(x\right)g'\left(x\right)+f\left(x\right)g\left(x\right)  

2.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Si   ff  y  gg  son funciones diferenciables, entonces   fg\frac{f}{g}  es diferenciable y   [f(x)g(x)] =\left[\frac{f\left(x\right)}{g\left(x\right)}\right]'\ =  

 f(x)g(x)\frac{f'\left(x\right)}{g'\left(x\right)}  

 f(x)g(x)f(x)g(x)f'\left(x\right)g\left(x\right)-f\left(x\right)g'\left(x\right)  

 (g(x)f(x)+g(x)f(x))g2(x)\frac{\left(g'\left(x\right)f\left(x\right)+g\left(x\right)f'\left(x\right)\right)}{g^2\left(x\right)}  

 f(x)g(x)f(x)g(x)g2(x)\frac{f'\left(x\right)g\left(x\right)-f\left(x\right)g'\left(x\right)}{g^2\left(x\right)}  

3.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Si   ff  y  gg  son funciones diferenciables, entonces   f gf\circ\ g  es diferenciable y   Dx[(f g)(x)]=D_x\left[\left(f\circ\ g\right)\left(x\right)\right]=  

 f(g(x))f'\left(g\left(x\right)\right)  

 g(f(x))f(x)g'\left(f\left(x\right)\right)f'\left(x\right)  

 f(g(x))f'\left(g\left(x\right)\right)  

 f(g(x))g(x)f'\left(g\left(x\right)\right)g'\left(x\right)  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 Dx[loga(x)]=D_x\left[\log_a\left(x\right)\right]=  

 1x\frac{1}{x}  

 axln(a)a^x\ln\left(a\right)  

 ln(a)x\frac{\ln\left(a\right)}{x}  

 1xln(a)\frac{1}{x\ln\left(a\right)}  

5.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

 ddx[csc(x)]=\frac{\text{d}}{\text{d}x}\left[\csc\left(x\right)\right]=  

 csc2(x)-\csc^2\left(x\right)  

 csc(x)cot(x)\csc\left(x\right)\cot\left(x\right)  

 cot(x)csc(x)-\cot\left(x\right)\csc\left(x\right)  

 cot2(x)-\cot^2\left(x\right)  

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 Dt[at]=D_t\left[a^t\right]=  

 ata^t  

 atln(a)\frac{a^t}{\ln\left(a\right)}  

 1at ln(a)\frac{1}{a^t\ \ln\left(a\right)}  

 at ln(a)a^{t\ }\ln\left(a\right)  

7.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

 ddx[arctan(f(x))]=\frac{d}{dx}\left[\arctan\left(f\left(x\right)\right)\right]=  

 11+x2\frac{1}{1+x^2}  

 f(x)1+x2\frac{f\left(x\right)}{1+x^2}  

 f(x)1+x2\frac{f'\left(x\right)}{1+x^2}  

 f(x)1+f2(x)\frac{f'\left(x\right)}{1+f^2\left(x\right)}  

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?