Search Header Logo

Differentiation Exam

Authored by Nicole Baize

Mathematics

10th - 12th Grade

Used 1+ times

Differentiation Exam
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

30 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find an equation of the tangent line to the graph of  x2+2y2=3x^2+2y^2=3  at the point  (1,1)\left(1,-1\right)  

 y+1=12(x1)y+1=\frac{1}{2}\left(x-1\right)  

 y+1=2(x1)y+1=-2\left(x-1\right)  

 y+1=12(x1)y+1=-\frac{1}{2}\left(x-1\right)  

 y+1=2(x1)y+1=2\left(x-1\right)  

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

If exyy2=e4e^{xy}-y^2=e-4 , then at  x=12x=\frac{1}{2}  and  y=2,dydx=y=2,\frac{dy}{dx}=  

 e2\frac{e}{2}  

 e4\frac{e}{4}  

 4e4e\frac{4e}{4-e}  

 4e8e\frac{4e}{8-e}  

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Suppose that  g(x)=h(f(x))g\left(x\right)=h\left(f\left(x\right)\right)  f(x)=6f\left(x\right)=6  h(3)=2h\left(3\right)=2  h(6)=4h'\left(6\right)=4  h(3)=15h'\left(3\right)=15 , and  f(3)=8f'\left(3\right)=8 . Find  g(3)g'\left(3\right) .

 6060  

 3232  

 44  

 120120  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Suppose that  g(x)=h(x)f(x)g\left(x\right)=\frac{h\left(x\right)}{f\left(x\right)}  f(x)=6f\left(x\right)=6  h(3)=2h\left(3\right)=2  h(6)=4h'\left(6\right)=4  h(3)=15h'\left(3\right)=15 , and  f(3)=8f'\left(3\right)=8 . Find  g(3)g'\left(3\right) .

 13\frac{1}{3}  

 33  

 22  

 53\frac{5}{3}  

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Suppose that  g(x)=h(x)f(x)g\left(x\right)=h\left(x\right)\cdot f\left(x\right)  f(x)=6f\left(x\right)=6  h(3)=2h\left(3\right)=2  h(6)=4h'\left(6\right)=4  h(3)=15h'\left(3\right)=15 , and  f(3)=8f'\left(3\right)=8 . Find  g(3)g'\left(3\right) .

 3232  

 88  

 106106  

 6060  

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Media Image

At  x=2x=2 , the function shown is:

both continuous and  differentiable

continuous, but not differentiable

differentiable, but not continuous

neither continuous or differentiable

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Media Image

A counter records people entering a fast-food restaurant. The data below shows the number of customers that enter the restaurant for each two-hour period starting at 8:00AM. Estimate the rate at which the customers are entering the store at 1:00PM. ( t=5t=5 )

 6 customershour6\ \frac{customers}{hour}  

 3 customershour-3\ \frac{customers}{hour}  

 39 customershour39\ \frac{customers}{hour} 

 6 customershour-6\ \frac{customers}{hour}  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?