MAF12 Revision for Exam

MAF12 Revision for Exam

University

20 Qs

quiz-placeholder

Similar activities

UAS ALJABAR LINEAR

UAS ALJABAR LINEAR

University

15 Qs

TPLM primaria 2020

TPLM primaria 2020

University

20 Qs

S06 Cuantiles Dispersion

S06 Cuantiles Dispersion

University

20 Qs

Funciones trigonométricas

Funciones trigonométricas

University

16 Qs

STS GANJIL MATEMATIKA UPT SDN 3 ARAWA IKM 2024-2025

STS GANJIL MATEMATIKA UPT SDN 3 ARAWA IKM 2024-2025

4th Grade - University

15 Qs

Math 1110 -- College Algebra Midterm Review

Math 1110 -- College Algebra Midterm Review

University

15 Qs

REMIDI PERSAMAAN GARIS LURUS KELAS 8B

REMIDI PERSAMAAN GARIS LURUS KELAS 8B

8th Grade - University

20 Qs

UJIAN KOMPREHENSIF PRODI MATEMATIKA

UJIAN KOMPREHENSIF PRODI MATEMATIKA

University

20 Qs

MAF12 Revision for Exam

MAF12 Revision for Exam

Assessment

Quiz

Mathematics

University

Practice Problem

Medium

Created by

Susie Matebasia

Used 6+ times

FREE Resource

AI

Enhance your content

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 Evaluate the limit for the function x242x2x6\frac{x^2-4}{2x^2-x-6} as  x2x\rightarrow2  

limit does not exist 

 47\frac{4}{7}  

 00  

 74\frac{7}{4}  

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Limit will only exist if the left side limit is not equal to the right side limit.

True

False

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the derivative of the following function: xtanx\frac{x}{\tan x}  


 tanx +xsec2xtan2x\frac{\tan x\ +x\sec^2x}{\tan^2x}  

 tanx xsec2xtan2x\frac{\tan x\ -x\sec^2x}{\tan^2x}  

 tanx +xtan2xsec2x\frac{\tan x\ +x\tan^2x}{\sec^2x}  

 tanx xtan2xsec2x\frac{\tan x\ -x\tan^2x}{\sec^2x}  

4.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

A circular metal disk is heated and its radius is changing at a rate of  0.02m20.02m^2 /s. Find the rate at which the area will change when the radius is 150cm? The are of the disc is given by  A=πr2A=\pi r^2  

\frac{0.02m^2}{s}

 dAdt=2πr\frac{dA}{dt}=2\pi r  

 dAdt=0.02\frac{dA}{dt}=0.02  

 drdt=0.018\frac{dr}{dt}=0.018  

 drdt=2×105\frac{dr}{dt}=2\times10^{-5}  

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

If y=4cos5(3x2)y=4\cos^5(3x−2)  , then  dxdy\frac{\text{d}x}{\text{d}y}  is equal to

 60cos4(3x2)sin(3x2)-60\cos^4\left(3x-2\right)\sin\left(3x-2\right)  

 60sin4(3x2)cos(3x2)-60\sin^4\left(3x-2\right)\cos\left(3x-2\right)  

 60cos4(3x2)sin(3x2)60\cos^4\left(3x-2\right)\sin\left(3x-2\right)  

 20cos4(3x2)sin(3x2)-20\cos^4\left(3x-2\right)\sin\left(3x-2\right)  

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Consider the parabola given by the equation 
 y=x^2+4x-5  . At which point on the graph of this parabola is the slope of the tangent line equal to 10?

Note: point refers to x and y value. therefore answer should be in the form  (x,y)\left(x,y\right) 

 (1,0)\left(1,0\right)  

 (3,16)\left(3,16\right)  

 (2,7)\left(2,7\right)  

 (10,135)\left(10,135\right)  

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the relative extreme of the function 


 x3x2x+3x^3-x^2-x+3  

No relative extreme 

Max at  (13,3227)\left(\frac{-1}{3},\frac{32}{27}\right)  and Min at  (1,2)\left(1,2\right)  

Max at  (1,2)\left(1,2\right)  and Min at  (13,3227)\left(\frac{-1}{3},\frac{32}{27}\right)  

Max at  (13,1)\left(-\frac{1}{3},1\right)  

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?