Graphs of Trig Functions

Graphs of Trig Functions

10th Grade

5 Qs

quiz-placeholder

Similar activities

REMOVAL OF BRACKETS INTRODUCTION

REMOVAL OF BRACKETS INTRODUCTION

8th - 10th Grade

10 Qs

SUMA DE ÁNGULOS DE TRIÁNGULOS

SUMA DE ÁNGULOS DE TRIÁNGULOS

6th - 12th Grade

10 Qs

Fase 1: Olimpiada Matemática - Categoría Descartes 11°

Fase 1: Olimpiada Matemática - Categoría Descartes 11°

10th - 11th Grade

10 Qs

Sistema de  ecuaciones

Sistema de ecuaciones

9th - 10th Grade

10 Qs

MATEMÁTICAS ÚLTIMO EXAMEN

MATEMÁTICAS ÚLTIMO EXAMEN

1st - 10th Grade

10 Qs

8b-3 & 8b-4 Quizizz

8b-3 & 8b-4 Quizizz

10th Grade

8 Qs

Multiplicación y División de números decimales

Multiplicación y División de números decimales

1st - 12th Grade

10 Qs

Estadística datos agrupados IELLDM

Estadística datos agrupados IELLDM

10th Grade

10 Qs

Graphs of Trig Functions

Graphs of Trig Functions

Assessment

Quiz

Mathematics

10th Grade

Practice Problem

Medium

CCSS
HSF-IF.C.7E, HSF.TF.A.4

Standards-aligned

Created by

Carlos Pioquinto

Used 19+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

Sine or Cosine?

y=sinx
y=cosx

Tags

CCSS.HSF-IF.C.7E

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Write an equation for the cosine function with amplitude 3, period 2pi, phase shift of pi, and vertical shift of 5.

y = 5cos(x - pi) + 3

y = 3cos(x - pi) + 5

y = 3cos(2x - pi) + 5

y = 5cos(2x - pi) + 3

Tags

CCSS.HSF-IF.C.7E

3.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

A trig function has an amplitude of 4 and a minimum value of 5.  What is its maximum value?

7
9
11
13

Tags

CCSS.HSF.TF.A.4

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

What is the equation of this graph?

Tags

CCSS.HSF-IF.C.7E

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

A carnival ferris wheel with a diameter of 60 ft makes one complete revolution every 38 seconds. The highest point of the ferris wheel is 65 ft off the ground. Write an equation that models the distant d from the ground after t seconds if you get on the ferris wheel at the bottom.