DP203_02

DP203_02

1st Grade

30 Qs

quiz-placeholder

Similar activities

Basis Data 2

Basis Data 2

1st Grade

30 Qs

  C#

C#

1st - 5th Grade

28 Qs

PTS PWPB

PTS PWPB

1st Grade

30 Qs

Pangkalan Data dan  Bahasa SQL

Pangkalan Data dan Bahasa SQL

1st - 5th Grade

30 Qs

Latihan Soal Informatika 1

Latihan Soal Informatika 1

1st Grade

25 Qs

DP-900_02_DADOS_RELACIONAIS

DP-900_02_DADOS_RELACIONAIS

1st - 3rd Grade

35 Qs

Database System DKC4312

Database System DKC4312

1st - 5th Grade

25 Qs

Monitor, troubleshoot, and optimize Azure solutions

Monitor, troubleshoot, and optimize Azure solutions

1st Grade

25 Qs

DP203_02

DP203_02

Assessment

Quiz

Computers

1st Grade

Easy

Created by

Edgar Martínez

Used 15+ times

FREE Resource

30 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

HOTSPOT -
You have an Azure Data Lake Storage Gen2 account named account1 that stores logs as shown in the following table.

(ver imagen)

You do not expect that the logs will be accessed during the retention periods.
You need to recommend a solution for account1 that meets the following requirements:
✑ Automatically deletes the logs at the end of each retention period
✑ Minimizes storage costs
What should you include in the recommendation? To answer, select the appropriate options in the answer area.
NOTE: Each correct selection is worth one point.
Hot Area:

Media Image
Media Image

Answer explanation

Box 1: Store the infrastructure logs in the Cool access tier and the application logs in the Archive access tier
For infrastructure logs: Cool tier - An online tier optimized for storing data that is infrequently accessed or modified. Data in the cool tier should be stored for a minimum of 30 days. The cool tier has lower storage costs and higher access costs compared to the hot tier.
For application logs: Archive tier - An offline tier optimized for storing data that is rarely accessed, and that has flexible latency requirements, on the order of hours.
Data in the archive tier should be stored for a minimum of 180 days.
Box 2: Azure Blob storage lifecycle management rules
Blob storage lifecycle management offers a rule-based policy that you can use to transition your data to the desired access tier when your specified conditions are met. You can also use lifecycle management to expire data at the end of its life.
Reference:
https://docs.microsoft.com/en-us/azure/storage/blobs/access-tiers-overview

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

You plan to ingest streaming social media data by using Azure Stream Analytics. The data will be stored in files in Azure Data Lake Storage, and then consumed by using Azure Databricks and PolyBase in Azure Synapse Analytics.
You need to recommend a Stream Analytics data output format to ensure that the queries from Databricks and PolyBase against the files encounter the fewest possible errors. The solution must ensure that the files can be queried quickly and that the data type information is retained.
What should you recommend?

  • A. JSON

  • B. Parquet

  • C. CSV

  • D. Avro

Answer explanation

Need Parquet to support both Databricks and PolyBase.
Reference:
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-file-format-transact-sql

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

You have an Azure Synapse Analytics dedicated SQL pool named Pool1. Pool1 contains a partitioned fact table named dbo.Sales and a staging table named stg.Sales that has the matching table and partition definitions.
You need to overwrite the content of the first partition in dbo.Sales with the content of the same partition in stg.Sales. The solution must minimize load times.
What should you do?

  • A. Insert the data from stg.Sales into dbo.Sales.

  • B. Switch the first partition from dbo.Sales to stg.Sales.

C. Switch the first partition from stg.Sales to dbo.Sales.

  • D. Update dbo.Sales from stg.Sales.

Answer explanation

A way to eliminate rollbacks is to use Metadata Only operations like partition switching for data management. For example, rather than execute a DELETE statement to delete all rows in a table where the order_date was in October of 2001, you could partition your data monthly. Then you can switch out the partition with data for an empty partition from another table
Note: Syntax:
SWITCH [ PARTITION source_partition_number_expression ] TO [ schema_name. ] target_table [ PARTITION target_partition_number_expression ]
Switches a block of data in one of the following ways:
✑ Reassigns all data of a table as a partition to an already-existing partitioned table.
✑ Switches a partition from one partitioned table to another.
✑ Reassigns all data in one partition of a partitioned table to an existing non-partitioned table.
Reference:
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/best-practices-dedicated-sql-pool

4.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Media Image

You are designing a slowly changing dimension (SCD) for supplier data in an Azure Synapse Analytics dedicated SQL pool.
You plan to keep a record of changes to the available fields.
The supplier data contains the following columns.

(ver imagen)

Which three additional columns should you add to the data to create a Type 2 SCD? Each correct answer presents part of the solution.
NOTE: Each correct selection is worth one point.

A. surrogate primary key

B. effective start date

  • C. business key

  • D. last modified date

  • F. foreign key

E. effective end date

Answer explanation

C: The Slowly Changing Dimension transformation requires at least one business key column.
BE: Historical attribute changes create new records instead of updating existing ones. The only change that is permitted in an existing record is an update to a column that indicates whether the record is current or expired. This kind of change is equivalent to a Type 2 change. The Slowly Changing Dimension transformation directs these rows to two outputs: Historical Attribute Inserts Output and New Output.
Reference:
https://docs.microsoft.com/en-us/sql/integration-services/data-flow/transformations/slowly-changing-dimension-transformation

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

HOTSPOT -
You have a Microsoft SQL Server database that uses a third normal form schema.
You plan to migrate the data in the database to a star schema in an Azure Synapse Analytics dedicated SQL pool.
You need to design the dimension tables. The solution must optimize read operations.
What should you include in the solution? To answer, select the appropriate options in the answer area.
NOTE: Each correct selection is worth one point.
Hot Area:

Media Image
Media Image

Answer explanation

Media Image

Box 1: Denormalize to a second normal form
Denormalization is the process of transforming higher normal forms to lower normal forms via storing the join of higher normal form relations as a base relation.
Denormalization increases the performance in data retrieval at cost of bringing update anomalies to a database.

Box 2: New identity columns -
The collapsing relations strategy can be used in this step to collapse classification entities into component entities to obtain flat dimension tables with single-part keys that connect directly to the fact table. The single-part key is a surrogate key generated to ensure it remains unique over time.
Example: (ver imagen)

Note: A surrogate key on a table is a column with a unique identifier for each row. The key is not generated from the table data. Data modelers like to create surrogate keys on their tables when they design data warehouse models. You can use the IDENTITY property to achieve this goal simply and effectively without affecting load performance.
Reference:
https://www.mssqltips.com/sqlservertip/5614/explore-the-role-of-normal-forms-in-dimensional-modeling/ https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-tables-identity

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

HOTSPOT -
You plan to develop a dataset named Purchases by using Azure Databricks. Purchases will contain the following columns:
✑ ProductID
✑ ItemPrice
✑ LineTotal
✑ Quantity
✑ StoreID
✑ Minute
✑ Month
✑ Hour

Year -

✑ Day
You need to store the data to support hourly incremental load pipelines that will vary for each Store ID. The solution must minimize storage costs.
How should you complete the code? To answer, select the appropriate options in the answer area.
NOTE: Each correct selection is worth one point.
Hot Area:

Media Image
Media Image

Answer explanation

Box 1: partitionBy -
We should overwrite at the partition level.
Example:
df.write.partitionBy("y","m","d")
.mode(SaveMode.Append)
.parquet("/data/hive/warehouse/db_name.db/" + tableName)
Box 2: ("StoreID", "Year", "Month", "Day", "Hour", "StoreID")
Box 3: parquet("/Purchases")
Reference:
https://intellipaat.com/community/11744/how-to-partition-and-write-dataframe-in-spark-without-deleting-partitions-with-no-new-data

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

You are designing a partition strategy for a fact table in an Azure Synapse Analytics dedicated SQL pool. The table has the following specifications:
✑ Contain sales data for 20,000 products.
Use hash distribution on a column named ProductID.

✑ Contain 2.4 billion records for the years 2019 and 2020.
Which number of partition ranges provides optimal compression and performance for the clustered columnstore index?

  • A. 40

  • B. 240

  • C. 400

  • D. 2,400

Answer explanation

Each partition should have around 1 millions records. Dedication SQL pools already have 60 partitions.
We have the formula: Records/(Partitions*60)= 1 million
Partitions= Records/(1 million 60)
Partitions= 2.4 x 1,000,000,000/(1,000,000
60) = 40
Note: Having too many partitions can reduce the effectiveness of clustered columnstore indexes if each partition has fewer than 1 million rows. Dedicated SQL pools automatically partition your data into 60 databases. So, if you create a table with 100 partitions, the result will be 6000 partitions.
Reference:
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/best-practices-dedicated-sql-pool

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?