waring-up Image segmentation

waring-up Image segmentation

University

5 Qs

quiz-placeholder

Similar activities

TA MODUL 12 (VERSI 1)

TA MODUL 12 (VERSI 1)

University

10 Qs

MIT App Inventor

MIT App Inventor

University

10 Qs

Deep Learning_DAML

Deep Learning_DAML

University

10 Qs

Let's Dive deep into DIP

Let's Dive deep into DIP

University

9 Qs

[P-2] PreTest PCD

[P-2] PreTest PCD

University

5 Qs

Image fundamentals

Image fundamentals

University

8 Qs

Pengolahan Citra 1

Pengolahan Citra 1

University

10 Qs

UPM Quiz

UPM Quiz

University

10 Qs

waring-up Image segmentation

waring-up Image segmentation

Assessment

Quiz

Computers

University

Easy

Created by

Irma Dewi

Used 3+ times

FREE Resource

5 questions

Show all answers

1.

OPEN ENDED QUESTION

3 mins • 1 pt

Sebutkan tiga langkah utama dalam proses Canny Edge Detection.

Evaluate responses using AI:

OFF

2.

OPEN ENDED QUESTION

3 mins • 1 pt

Apa tujuan utama dari teknik Watershed dalam pengolahan citra, dan bagaimana cara kerjanya?

Evaluate responses using AI:

OFF

3.

OPEN ENDED QUESTION

3 mins • 1 pt

Bagaimana Otsu's Thresholding berbeda dari metode ambang batas lainnya dalam segmentasi citra, dan apa keuntungannya

Evaluate responses using AI:

OFF

4.

OPEN ENDED QUESTION

3 mins • 1 pt

Apa yang dimaksud dengan "over-segmentation" dalam konteks Watershed, dan apa yang bisa dilakukan untuk menghindari hal ini

Evaluate responses using AI:

OFF

5.

MATCH QUESTION

1 min • 1 pt

Match the following steps with their descriptions in the context of implementing the watershed algorithm for image segmentation.

Watershed Transformation

Final step that involves removing small regions or modifying the segmented image for better results.

Image Preprocessing

This step involves reducing noise in the image and possibly converting it to grayscale.

Post-processing

In this step, a gradient image is created that represents the 'topography' of the original image.

Computing Gradients

This is the step where flooding simulations are done based on the gradient image.