quiz 2 (AI)

quiz 2 (AI)

University

10 Qs

quiz-placeholder

Similar activities

ჭადრაკის საფუძვლები

ჭადრაკის საფუძვლები

1st Grade - University

10 Qs

quiz 2 (AI)

quiz 2 (AI)

Assessment

Quiz

Mathematics

University

Easy

Created by

n k

Used 8+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

უნივერსალური მიახლოების თეორემის მიხედვით

ერთზე მეტი ფარული შრის მქონე ნეირონული ქსელი საკმარისია ნებისმიერ უწყვეტ ფუნქციასთან მისაახლოვებლად

მხოლოდ ერთი ფარული შრის მქონე ნეირონული ქსელი საკმარისია ნებისმიერ უწყვეტ ფუნქციასთან მისაახლოვებლად

მხოლოდ ერთი ფარული შრის მქონე ნეირონული ქსელი საკმარისია ნებისმიერ ფუნქციასთან მისაახლოვებლად

არცერთი ზემოთ ჩამოთვლილი

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

ნეირონული ქსელის წვრთნის შედეგად დანაკარგის ცვლილება

საწვრთნელი ქვესიმრავლეზე მიღწეული შედეგის უკუ-პროპორციულია

სატესტო ქვესიმრავლეზე მიღწეული შედეგის პირდაპირ-პროპორციულია

წვრთნის კოეფიციენტის დნობის უკუ-პროპორციულია

არ არის კორელაციაში საწვრთნელ სიმრავლეზე მირწეულ შედეგთან

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

პაკეტური ნორმალიზების შედეგად მიიღწევა ყველა ქვემოთ ჩამოთვლილი სარგებელი, გარდა:

მცირდება შრეების კოვარიანსის წანაცვლება (Covariance Shift), ანუ ხელს უშლის ეფექტის ექსპონენციალურ აკუმულირებას.

თავიდან ვიცილებთ ზედმეთ მიახლოებას (overfitting)

არ ჩქარდება წვრთნის პროცესი

არ გვიწევს ძალიან დიდ ან ძალიან პატარა რიცხვებთან მუშაობა, რაც ამცირებს მონაცემების დანაკარგის რისკს

ყველა ნეირონს აქვს მონაწილეობის ფარდობითად თანაბარი შანსი

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

ზედმეტი მიახლოების (overfitting) თავიდან აცილებაში ვერ დაგვეხმარება

ა) შემთხვევითი ამოყრის მეთოდი (DropOuts)

ბ) სავალიდაციო ქვესიმრავლეზე შედეგის გაუარესებისას წვრთნის ნაადრევი შეწყვეტა

გ) წვრთნის კოეფიციენტის (a) ციკლური დნობა

დ) მონაცემთა ნორმალიზაცია/სტანდარტიზაცია

(ა) და (ბ)

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

მონაცემთა სტანდარტიზაცია უზრუნველყოფს

სიმრავლის მასშტაბირებას კოორდინატთა სათავის მიმართ

სიმრავლის მასშტაბირებას [0,1] ინტერვალში

სიმრავლის თანაბარ გადანაწილებას მაქსიმუმსა და მინიმუმს შორის

არცერთ ზემოთ ჩამოთბლილს

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

ვალიდაციის ქვესიმრავლის ელემენტებისთვის ჭეშმარიტია შემდეგი მტკიცება:

წვრთნის თითოეულ ეპოქაში უნდა მოხდეს ვალიდაციის ქვესიმრავლის ელემენტებზე მხოლოდ წინა გავრცობა

წვრთნის თითოეულ ეპოქაში უნდა მოხდეს ვალიდაციის ქვესიმრავლის ელემენტებზე მხოლოდ უკანა გავრცობა

წვრთნის დასრულებისას უნდა მოხდეს ვალიდაციის ქვესიმრავლის ელემენტებზე მხოლოდ წინა გავრცობა

წვრთნის დასრულებისას უნდა მოხდეს ვალიდაციის ქვესიმრავლის ელემენტებზე მხოლოდ უკანა გავრცობა

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

ნეირონული ქსელის წვრთნისას უკან გავრცობის მიზანია

ნეირონების აქტივაცია

წონების დაკორექტირება

სიგნალების შეკრება

დანაკარგის მაქსიმიზაცია

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?