математика 4

математика 4

Assessment

Quiz

Other

1st Grade

Hard

Created by

Mira Seidakbar

FREE Resource

Student preview

quiz-placeholder

47 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

1

𝑦 = 𝑥𝑦′ + 1

(𝑦′)2

. Klero tenglamasini yeching. Решите уравнение Клеро 𝑦 =

𝑥𝑦′ + 1 . Solve the Clairaut equation 𝑦 = 𝑥𝑦′ + 1

(𝑦′)2

𝑦 = 1+𝑥2

{ 1

(𝑦′)2

𝑦 = 𝑥𝐶 + 𝐶2

𝑦 = 1−𝑥2

{ 1

𝑦 = 𝑥𝐶 + 𝐶2

𝑦 = 1−𝑥2

{ 1

𝑦 = 𝑥𝐶 − 𝐶2

𝑦 = 1+𝑥2

{ 1

𝑦 = −𝑥𝐶 − 𝐶2

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

𝑧 = ln(𝑥2 − 𝑦) funksiyaning aniqlanish sohasini toping. Найдите область определения функции 𝑧 = ln(𝑥2 − 𝑦). Find the domain of the function 𝑧 = ln(𝑥2 − 𝑦).

𝑦 < 𝑥2

𝑦 < −𝑥2

𝑦 < 𝑥

𝑦 > 𝑥2

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Ushbu tenglamalardan qaysi biri o’zgaruvchilari ajraladigan diffferensial tenglama? Какое из этих уравнений является дифференциальным уравнением с разделяющимися переменными? Which of these equations is a separable differential

equation?

𝑦′ = 𝑥𝑦

𝑦′ = 𝑦´ + 𝑠𝑖𝑛𝑦´

𝑦 = √𝑦′ + (𝑦′)2

𝑦′ + 2𝑦 = 𝑒𝑥

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

197. 𝑥𝑦′ = 𝑥 + 2𝑦 bir jinsli tenglamani yeching. Решите однородное уравнение 𝑥𝑦′ = 𝑥 + 2𝑦. Solve homogeneous equation 𝑥𝑦′ = 𝑥 + 2𝑦.

𝑦 = 𝑥(𝐶𝑥 − 1)

𝑦 = 2𝑥(𝐶𝑥 − 1)

𝑦 = 𝑥(𝐶𝑥 − 2)

𝑦 = 𝑥(𝐶𝑥 + 1)

2 1

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

198. ∫O 𝑑𝑥∫O (𝑥 − 𝑦)𝑑𝑦 Ikki karrali integralni hisoblang. Вычислите двойной

2 1 2 1

интеграл ∫O 𝑑𝑥∫O (𝑥 − 𝑦)𝑑𝑦. Calculate double integral ∫O 𝑑𝑥∫O (𝑥 − 𝑦)𝑑𝑦.

1

0

-1

-2

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

𝑦′ = 𝑥 differensial tenglamani yeching. Решите дифференциальное уравнение

𝑦′ = 𝑥. Solve a differential equation 𝑦′ = 𝑥.

𝑦 = 𝑥2 + 𝐶

2

𝑦 = − 𝑥2 + 𝐶

2

𝑦 = 𝑥2 + 𝐶

3

𝑦 = 3𝑥2 + 𝐶

2

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

𝑀O(1; −1; 2) nuqtadagi 𝑧 = 𝑥2 + 𝑦2 aylanma paraboloidiga urinuvchi tekislik tenglamasini yozing. Написать уравнения касательной плоскости к параболоиду

вращения 𝑧 = 𝑥2 + 𝑦2 в точке 𝑀O(1; −1; 2). Write the equations of the tangent plane to paraboloid 𝑧 = 𝑥2 + 𝑦2 at point 𝑀O(1; −1; 2).

𝑧 − 2 = 2 · (𝑥 − 1) − 2 · (𝑦 + 1)

𝑧 − 2 = 2 · (𝑥 + 1) − 2 · (𝑦 + 1)

𝑧 − 2 = 2 · (𝑥 − 1) − 2 · (𝑦 − 1)

𝑧 − 2 = 2 · (𝑥 − 1) + 2 · (𝑦 + 1)

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?