Search Header Logo

Solving multi-step problems using non-linear inequalities in one variable

Authored by Wayground Content

Mathematics

9th - 12th Grade

Solving multi-step problems using non-linear inequalities in one variable
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which is the solution set of  x2+6x+70x^2+6x+7\ge0 ?

 [32,3+2]\left[-3-\sqrt{2},-3+\sqrt{2}\right]  

 (32,43+2)\left(-3-\sqrt{2},4-3+\sqrt{2}\right)  

 (,32)(3+2,)\left(-\infty,-3-\sqrt{2}\right)\cup\left(-3+\sqrt{2},\infty\right)  

 (,32][3+2,)\left(-\infty,-3-\sqrt{2}\right]\cup\left[-3+\sqrt{2},\infty\right)  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which of the following is a quadratic inequality?

2x2+2x4=02x^2+2x-4=0

2x+1>12x+1>1

x2+1>0x^2+1>0

x2+2x1=0x^2+2x-1=0

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Quadratic Equation

NOT

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Solve the quadratic inequality:

 x2490x^2-49\le0  

 x7 ,  x7x\le-7\ ,\ \ x\ge7  

 x0 ,  x7x\le0\ ,\ \ x\ge7  

 7x7-7\le x\le7  

 7x0-7\le x\le0  

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Solve the quadratic inequality:

 x2490x^2-49\ge0  

 (, 7] U [7, )\left(-\infty,\ -7\right]\ U\ \left[7,\ \infty\right)  

 x0 ,  x7x\le0\ ,\ \ x\ge7  

 [7, 7]\left[-7,\ 7\right]  

 7x0-7\le x\le0  

6.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Solve:

 2x2+9x143<02x^2+9x-143<0  

 11<x<6.5-11<x<6.5  

 11x6.5-11≤x≤6.5  

no solution

all reals

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Determine the solution of the given quadratic inequality.

 (5x3)(x+1)<0\left(5x-3\right)\left(x+1\right)<0  

 x<1 or x>35x<-1\ or\ x>\frac{3}{5}  

 1<x<35-1<x<\frac{3}{5}  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?