Properties of Logs Practice

Properties of Logs Practice

Assessment

Quiz

Mathematics

9th - 12th Grade

Hard

Change-of-base, CCSS.HSF.BF.B.5, CCSS.8.EE.C.7B

Standards-aligned

Created by

Wayground Content

Used 8+ times

FREE Resource

Student preview

quiz-placeholder

23 questions

Show all answers

1.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Evaluate the logarithm using the change-of-0.base formula. (Round your answer to three decimal places):  log74\log_74  

Answer explanation

 logbx=logxlogb=lnxlnb\log_bx=\frac{\log x}{\log b}=\frac{\ln x}{\ln b}  

Tags

Change-of-base

2.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Evaluate the logarithm using the change-of-0.base formula. (Round your answer to three decimal places):  log200.125\log_{20}0.125  


Answer explanation

 logbx=logxlogb=lnxlnb\log_bx=\frac{\log x}{\log b}=\frac{\ln x}{\ln b}  

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Rewrite the log as a ratio of common logarithms: log3x\log_3x  


 log3logx\frac{\log3}{\log x}  

 logxlog3\frac{\log x}{\log3}  

Answer explanation

Think: Change-of-base

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Rewrite the log as a ratio of natural logarithms: logx 34\log_x\ \frac{3}{4}  


 ln 34ln x\frac{\ln\ \frac{3}{4}}{\ln\ x}  

 lnxln 34\frac{\ln x}{\ln\ \frac{3}{4}}  

Answer explanation

Change-of-base

5.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Use the properties of logarithms to write this expression as a sum, difference, and/or constant multiple of logarithms (aka EXPAND the expression): log y2\log\ \frac{y}{2}  


 logylog2\log y\cdot\log2  

 logylog2\frac{\log y}{\log2}  

 logylog2\log y-\log2  

 logy2\log y^2  

Answer explanation

Media Image

6.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Use the properties of logarithms to write this expression as a sum, difference, and/or constant multiple of logarithms (aka EXPAND the expression):  ln3t   (cube root)\ln^3\sqrt{t}\ \ \ \left(cube\ root\right)  

 lnt+ln 13\ln t+\ln\ \frac{1}{3}  

 3lnt3\ln t  

 lnt13\ln t^{\frac{1}{3}}  

 13lnt\frac{1}{3}\ln t  

Answer explanation

Rewrite the cube root as t^1/3 first.  Then, use the power property of logs.

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Use the properties of logarithms to write this expression as a sum, difference, and/or constant multiple of logarithms (aka EXPAND the expression):  ln xx2+1\ln\ \frac{x}{\sqrt{x^2+1}}  

 lnx+lnx2+1\ln x+\ln\sqrt{x^2+1}  

 lnx12ln(x2+1)\ln x-\frac{1}{2}\ln\left(x^2+1\right)  

 lnxlnx2+1\ln x-\ln\sqrt{x^2+1}  

 lnx12ln(x2+1)\frac{\ln x}{\frac{1}{2}\ln\left(x^2+1\right)}  

Answer explanation

The square root is the 1/2 power.

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?