U2 L-14 through 15 Quadrilaterals

U2 L-14 through 15 Quadrilaterals

9th - 12th Grade

8 Qs

quiz-placeholder

Similar activities

Online Maths Quiz

Online Maths Quiz

10th Grade - University

10 Qs

CH5 TRIGONOMETRY RATIOS - ANGLE (DLP)

CH5 TRIGONOMETRY RATIOS - ANGLE (DLP)

9th Grade

10 Qs

KYK MATHS STATISTICS3

KYK MATHS STATISTICS3

10th Grade

10 Qs

10th Mathematics AP part 2

10th Mathematics AP part 2

10th Grade

10 Qs

math

math

7th Grade - University

11 Qs

POLYNOMIALS 9TH

POLYNOMIALS 9TH

9th - 10th Grade

10 Qs

Metric Conversions

Metric Conversions

8th - 9th Grade

10 Qs

CLASS-IX MATHS

CLASS-IX MATHS

9th - 12th Grade

10 Qs

U2 L-14 through 15 Quadrilaterals

U2 L-14 through 15 Quadrilaterals

Assessment

Quiz

Mathematics

9th - 12th Grade

Practice Problem

Easy

CCSS
HSG.CO.C.11, HSG.SRT.B.5, HSG.C.A.3

Standards-aligned

Created by

Maria Cruz Farooqi

Used 3+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

8 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Select the statement that must be true.

Parallelograms have at least one right angle. 

If a quadrilateral has opposite sides that are both congruent and parallel, then it is a parallelogram. 

Parallelograms have congruent diagonals. 

The height of a parallelogram is greater than the lengths of the sides.

Tags

CCSS.HSG.CO.C.11

2.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Media Image

Select all statements that must be true:

EFGH is a rectangle.

Triangle HEF is congruent to triangle GFH.

ED is congruent to HD, DG, and DF.

Triangle HEF is congruent to triangle FGH.

Triangle EDH is congruent to triangle HDG.

Tags

CCSS.HSG.CO.C.11

3.

DROPDOWN QUESTION

1 min • 1 pt

Media Image

Figure KLMN is a parallelogram so line MN is parallel to line KL and line KN is ​ (a)   to line LM. Angle KLN and angle MNL are congruent, and angle KNL and angle MLN are congruent, because of the ​ (b)   Theorem. Line segment NL is congruent to line segment LN because they are the ​ (c)   segment. Therefore, triangle KNL is congruent to triangle MLN by the ​ (d)   Theorem.

 

parallel
Alternate Interior Angles
same
Angle Side Angle

Tags

CCSS.HSG.SRT.B.5

4.

DROPDOWN QUESTION

1 min • 1 pt

Media Image

The triangles need not be congruent because ​ (a)   parts are not congruent.

For example, AB is not ​ (b)   to ED or ∠A and ∠D are ​ (c)   congruent. 

not
corresponding
congruent

5.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Media Image

Triangle DAC is isosceles with congruent sides AD and AC.

Which additional given information is sufficient for showing that triangle DBC is isosceles?

Segment DB is congruent to segment BC.

Segment AB is congruent to segment BD.

Angle ABD is congruent to angle ABC.

Angle ADC is congruent to angle ACD.

Tags

CCSS.HSG.SRT.B.5

6.

DROPDOWN QUESTION

1 min • 1 pt

Media Image

congruent
themselves
SAS
corresponding
parallel

Tags

CCSS.HSG.C.A.3

7.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Media Image

8.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Given that EFGH is a parallelogram and angle HEF is right, which reasoning about angles will help her prove that angle FGH is also a right angle?

Corresponding angles are congruent when parallel lines are cut by a transversal.

Opposite angles in a parallelogram are congruent.

Vertical angles are congruent.

The base angles of an isosceles triangle are congruent.

Tags

CCSS.HSG.CO.C.11