Area of a Triangle

Area of a Triangle

10th Grade

4 Qs

quiz-placeholder

Similar activities

Sine & Cosine Amplitude

Sine & Cosine Amplitude

10th - 12th Grade

9 Qs

Solving for Missing Angles with Trig

Solving for Missing Angles with Trig

9th - 10th Grade

8 Qs

8.4 Trigonometry Practice

8.4 Trigonometry Practice

9th - 10th Grade

8 Qs

Tdnl Introduction to integration MIF

Tdnl Introduction to integration MIF

10th Grade - University

9 Qs

Algebra I Equations Unit Review

Algebra I Equations Unit Review

7th - 12th Grade

8 Qs

Geometry Acc. Chapter 6 Quiz

Geometry Acc. Chapter 6 Quiz

KG - University

8 Qs

Basic Sine/Cosine Graphs

Basic Sine/Cosine Graphs

10th - 12th Grade

7 Qs

Trig Identities Practice

Trig Identities Practice

10th Grade

7 Qs

Area of a Triangle

Area of a Triangle

Assessment

Quiz

Mathematics

10th Grade

Hard

CCSS
HSG.SRT.D.9

Standards-aligned

Created by

Barbara White

FREE Resource

4 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

Media Image

The area of the triangle is

½ x 8 x 9 x sin 72o

½ x 9 x 10 x sin 72o

½ x 8 x 10 x sin 72o

Tags

CCSS.HSG.SRT.D.9

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

The area of the triangle is

½ x 7.6 x 5.89 x sin 66.9o

½ x 7.64 x 5.89 x sin 66.9o

½ x 7.64 x 5.89 x sin 45.5o

½ x 7.64 x 5.89 x sin 66.9o

Tags

CCSS.HSG.SRT.D.9

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

To find the area of the triangle...

Step 1: a = 7 cos 25o; Step 2: ½ x 7 x (7 cos 25o) x sin25o

Step 1: a = 7 sin 25o; Step 2: ½ x 7 x (7 sin 25o) x sin25o

Step 1: b = 7 tan 25o; Step 2: ½ x 7 x (7 tan 25o) x sin25o

Step 1: b = 7 sin 25o; Step 2: ½ x 7 x (7 sin 25o) x sin25o

Tags

CCSS.HSG.SRT.D.9

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

Which steps below shows the correct way to get the shortest distance from A to BC?

Step 1: Area = ½ x 8 x 12 x sin 89.6o; Step 2: Shortest distance = (Area) ÷ (½ x 8)

Step 1: Area = ½ x 8 x 9 x sin 89.6o; Step 2: Shortest distance = (Area) ÷ (½ x 9)

Step 1: Area = ½ x 8 x 9 x sin 89.6o; Step 2: Shortest distance = (Area) ÷ (½ x 12)

Shortest distance = 9 cos 44.8o

Tags

CCSS.HSG.SRT.D.9