Search Header Logo

Geometry Triangle Proof Statements

Authored by Anthony Clark

Mathematics

10th Grade

20 Questions

TEKS covered

Geometry Triangle Proof Statements
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

Since segment BD is part of both triangles, it is congruent to itself, what do we call this?

Substitution Property

Commutative Property

Reflexive Property

CPCTC

Reflective Property

Tags

TEKS.MATH.G.6B

TEKS.MATH.G.6C

TEKS.MATH.G.6D

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

What is statement #1?

BC≅DC

AC≅EC

BC≅DC, AC≅EC

∆BCA≅∆DCE

Tags

TEKS.MATH.G.6B

TEKS.MATH.G.6C

TEKS.MATH.G.6D

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

What is statement #2?

∠ABC≅∠EDC

∠BCA≅∠DCE

BC≅CD

∠E≅∠A

Tags

TEKS.MATH.G.6B

TEKS.MATH.G.6C

TEKS.MATH.G.6D

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

Can the HL Congruence Theorem be used to prove the triangles congruent? If so, write a congruence statement.

Yes, △ABC≅△YXW

Yes, △CBA≅△WXY

Yes, △BCA≅△XYW

No

Tags

TEKS.MATH.G.6B

TEKS.MATH.G.6C

TEKS.MATH.G.6D

5.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

Statements Reasons

1. ∠A ≅ ∠C 1. ​ (a)  

2. BD bisects ∠ABC 2. ​ (b)  

3. ∠DBA ≅ ∠DBC 3. ​ (c)  

4. BDBD 4. ​ (d)  

5. △ABD ≅ △CBD 5. ​ (e)  

Given

Definition of bisect

Reflexive

AAS

Definition of midpoint

SSS

SAS

ASA

Vertical Angles Theorem

Linear Pairs Theorem

Tags

TEKS.MATH.G.6B

TEKS.MATH.G.6C

TEKS.MATH.G.6D

6.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

What is the "statement" for step 3 of the proof? 

∡EDA≅∡DCB

∡AED≅∡BEC

DE=CE

∡AED≅∡CED

Tags

TEKS.MATH.G.6B

TEKS.MATH.G.6C

TEKS.MATH.G.6D

7.

DRAG AND DROP QUESTION

1 min • 1 pt

Media Image

Statements Reasons

1. ​ (a)   1. Given

2. ​ (b)   2. Given

3. ​ (c)   3. Definition of bisect

4. ​ (d)   4. Vertical Angles Theorem

5. ​ (e)   5. ASA

∠1 ≅ ∠2

JG bisects EH at F

EF ≅ FH

∠3 ≅ ∠4

△EFJ ≅ △HFG

∠EJF ≅ ∠HGF

EJ ≅ GH

JF ≅ FG

Definition of bisect

Definition of midpoint

Tags

TEKS.MATH.G.6B

TEKS.MATH.G.6C

TEKS.MATH.G.6D

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?