Solving Quadratic Equations by Completing the Square

Solving Quadratic Equations by Completing the Square

9th Grade

10 Qs

quiz-placeholder

Similar activities

Solving Quadratics Mixed Practice

Solving Quadratics Mixed Practice

9th - 12th Grade

14 Qs

Topic 9.5-9.6: Complete the Square & Quadratic Form -ASGN

Topic 9.5-9.6: Complete the Square & Quadratic Form -ASGN

9th Grade

15 Qs

Solving Quadratics

Solving Quadratics

8th - 9th Grade

14 Qs

Choosing the Best Method to Solve Quadratic Equations

Choosing the Best Method to Solve Quadratic Equations

10th Grade

15 Qs

Solving Quadratic Equations Review

Solving Quadratic Equations Review

10th Grade

13 Qs

Solving Quadratic Functions

Solving Quadratic Functions

11th Grade

13 Qs

Quadratic Formula

Quadratic Formula

9th Grade

15 Qs

Solving Quadratics by Completing the Square

Solving Quadratics by Completing the Square

8th - 12th Grade

12 Qs

Solving Quadratic Equations by Completing the Square

Solving Quadratic Equations by Completing the Square

Assessment

Quiz

Mathematics

9th Grade

Hard

Created by

Anthony Clark

FREE Resource

10 questions

Show all answers

1.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Solve the quadratic Equation by completing the square.  Round off to 1 decimal place. 

Answer explanation

 (2x+1)2=16\left(2x+1\right)^2=16  
 (2x+1)2=16\sqrt{\left(2x+1\right)^2}=\sqrt{16}  
 2x+1=±42x+1=\pm4  
 x=412=32x=\frac{4-1}{2}=\frac{3}{2} 
 x=412=52x=\frac{-4-1}{2}=\frac{-5}{2}  

2.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Answer explanation

 x=973=163x=\frac{-9-7}{-3}=\frac{16}{3}   (73x)2=81\left(7-3x\right)^2=81  
 (73x)2=81\sqrt{\left(7-3x\right)^2}=\sqrt{81}  
 73x=±97-3x=\pm9  
 x=973=163x=\frac{-9-7}{-3}=\frac{16}{3} 
 x=973=23x=\frac{9-7}{-3}=\frac{-2}{3}  

3.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Solve the quadratic Equation by completing the square round off to 2 decimal places.

Answer explanation

 x=61=3.45x=-\sqrt{6}-1=-3.45   x2+2x+(22)2(22)25=0x^2+2x+\left(\frac{2}{2}\right)^2-\left(\frac{2}{2}\right)^2-5=0  
 x2+2x+115=0x^2+2x+1-1-5=0  
 (x+1)26=0\left(x+1\right)^2-6=0 
 (x+1)2=6\sqrt{\left(x+1\right)^2}=\sqrt{6}  
 x+1=±6x+1=\pm\sqrt{6}  
 x=±61x=\pm\sqrt{6}-1  
 x=61=1.45x=\sqrt{6}-1=1.45   x=61=3.45x=-\sqrt{6}-1=-3.45  

4.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Answer explanation

 x212x+9=0x^2-12x+9=0   x212x+(122)2(122)2+9=0x^2-12x+\left(\frac{-12}{2}\right)^2-\left(\frac{-12}{2}\right)^2+9=0  
 x212x+3636+9=0x^2-12x+36-36+9=0  
 (x6)227=0\left(x-6\right)^2-27=0 
 (x6)2=27\sqrt{\left(x-6\right)^2}=\sqrt{27}  
 x6=±5.20x-6=\pm5.20  
 x=5.20+6=11.20x=5.20+6=11.20  
 x=5.20+6=0.80x=-5.20+6=0.80   

5.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Solve the quadratic Equation by completing the square.  Round off to 2 decimal places

Answer explanation

(2x+1)2=16\left(2x+1\right)^2=16
(2x+1)2=16\sqrt{\left(2x+1\right)^2}=\sqrt{16}
2x+1=±42x+1=\pm4
x=412=32x=\frac{4-1}{2}=\frac{3}{2}
x=412=52x=\frac{-4-1}{2}=\frac{-5}{2}

6.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Answer explanation

  14+x3x2=414+x-3x^2=4    3x2x14+4=03x^2-x-14+4=0  
 3x23x3103=0\frac{3x^2}{3}-\frac{x}{3}-\frac{10}{3}=0 
 x213x+(16)2(16)2103=0x^2-\frac{1}{3}x+\left(\frac{1}{6}\right)^2-\left(\frac{1}{6}\right)^2-\frac{10}{3}=0 
 (x16)2136(103×1212)\left(x-\frac{1}{6}\right)^2-\frac{1}{36}-\left(\frac{10}{3}\times\frac{12}{12}\right)  

 (x16)213612036=0\left(x-\frac{1}{6}\right)^2-\frac{1}{36}-\frac{120}{36}=0  

 (x16)212136=0\left(x-\frac{1}{6}\right)^2-\frac{121}{36}=0   (x16)2=12136\sqrt{\left(x-\frac{1}{6}\right)^2}=\sqrt{\frac{121}{36}}    x16=±116x-\frac{1}{6}=\pm\frac{11}{6}   x=±116+16x=\pm\frac{11}{6}+\frac{1}{6}   x=2,53x=2,\frac{-5}{3}  

7.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Answer explanation

 (x+1)2=9\left(x+1\right)^2=9  
 (x+1)2=9\sqrt{\left(x+1\right)^2}=\sqrt{9}  
 x+1=±3x+1=\pm3  
 x=31=2x=3-1=2 
 x=31=4x=-3-1=-4  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?