Persiapan KSN

Persiapan KSN

9th Grade

25 Qs

quiz-placeholder

Similar activities

Seleksi OSN Matematika SMP

Seleksi OSN Matematika SMP

9th Grade

20 Qs

REMEDIAL KELAS 7

REMEDIAL KELAS 7

7th Grade - University

20 Qs

Tes pengetahuan dan logika

Tes pengetahuan dan logika

7th - 9th Grade

20 Qs

Kuis Matematika Dasar

Kuis Matematika Dasar

5th Grade - University

20 Qs

Bilangan Bulat

Bilangan Bulat

1st Grade - Professional Development

20 Qs

SOAL CERITA BILANGAN BULAT

SOAL CERITA BILANGAN BULAT

7th - 9th Grade

20 Qs

REMIDI MATEMAT 9 SMT 1

REMIDI MATEMAT 9 SMT 1

9th Grade

20 Qs

bilangan bulat

bilangan bulat

1st - 12th Grade

20 Qs

Persiapan KSN

Persiapan KSN

Assessment

Quiz

Mathematics

9th Grade

Hard

Created by

Valentinus P.G. Tapoona

Used 1+ times

FREE Resource

25 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 2 pts

Media Image

Diketahui Ab = 12 cm dan BC = 5 cm. Maka panjang Lintasan DPQR adalah . . .

119/13

120/13

214/13

239/13

Answer explanation

Media Image

Segitiga pada gambar adalah segitiga yang sebangun maka ukuran sisinya pasti sama.

2.

MULTIPLE CHOICE QUESTION

3 mins • 2 pts

Jika -1 < x < y < 0, maka . . .

xy < x2y < xy2

xy < xy2 < x2y

xy2 < x2y < xy

x2y < xy2 < xy

Answer explanation

Yag memenuhi adalah x2y < xy2 < xy.

kita ambil 2 bilangan antara -1 dan 0.

Misalkan x = -0,3 dan y = -0,2. masukan ke persamaan x2y < xy2 < xy. Maka pernyataan ini yang tepat. Coba dibuktikan dengan mencakar.

3.

MULTIPLE CHOICE QUESTION

3 mins • 2 pts

Misalkan ń adalah suatu bilangan bulat positif. Jumlah tiga bilangan prima 3n-4, 4n-5, dan 5n-3 adalah...

12

14

15

17

Answer explanation

n adalah bilangan bulat positif maka n = {1, 2, 3, 4, 5, 6, ....}

Jika kita memilih n = 1, maka

3n – 4 = 3(1) – 4 = 3 – 4 = –1 (bukan bilangan prima)

Berarti untuk n = 1 tidak memenuhi

Jika kita memilih n = 2, maka

3n – 4 = 3(2) – 4 = 6 – 4 = 2 (merupakan bilangan prima)

4n – 5 = 4(2) – 5 = 8 – 5 = 3 (merupakan bilangan prima)

5n – 3 = 5(2) – 3 = 10 – 3 = 7 (merupakan bilangan prima)

Jadi nilai n yang memenuhi adalah n = 2

Sehingga jumlah dari tiga bilangan tersebut adalah:

= (3n – 4) + (4n – 5) + (5n – 3)

= 2 + 3 + 7

= 12

4.

MULTIPLE CHOICE QUESTION

3 mins • 2 pts

Pada jajar genjang ABCD ,jarak antara sepasang sisi sejajar pertama adalah 4 cm dan jarak antara sisi sejajar lainnya adalah 9 cm. Luas jajar genjang ABCD adalah​...

30

32

34

36

Answer explanation

Jarak antara sepasang sisi sejajar pertama adalah 4 cm.

t = 4 cm

Jarak antara sisi sejajar lainnya adalah 9 cm

a = 9 cm

Luas Jajargenjang

= a × t

= 9 × 4

= 36 cm²

5.

MULTIPLE CHOICE QUESTION

3 mins • 2 pts

Diketahui xy + 2x + y = 10 dengan x dan y bilangan bulat positif. Nilai minimum dari x + y adalah...

2

4

6

8

Answer explanation

Media Image

Nilai minimum x + y adalah 4 ketika x = y = 2 atau x = 3 dan y = 1.

6.

MULTIPLE CHOICE QUESTION

3 mins • 2 pts

Diketahui persamaan garis 3x+4y−5=0.

Jika garis tersebut direfleksikan terhadap sumbu Y dan dilanjutkan dilatasi [0,3], maka persamaannya menjadi...

x - 4/3 y + 5 = 0

- x + 4/3 y - 5 = 0

x - 3/4 y + 5 = 0

- x + 3/4 y - 5 = 0

Answer explanation

- x + 4/3 y - 5 = 0

Rumus umum refleksi terhadap sumbu y

A( 𝑥, 𝑦) -> A' ( - 𝑥 , 𝑦) 𝑥 = - 𝑥' 𝑥' = - x 𝑦 = 𝑦'

Rumus umum dilatasi dengan pusat P (0,0) dan faktor dilatasi k

A(𝑥,y) -> A'(k𝑥 , ky) 𝑥' = k𝑥 y' = ky Maka 𝑥 = 𝑥'/k y = y'/k

Pembahasan direfleksikan terhadap sumbu y 3x + 4y - 5 = 0

3 (-x') + 4y' - 5 = 0

-3x' + 4y' - 5 = 0

-3x' + 4y' - 5=0

dilatasi [0,3] maka

k = 3 -3x''/3 + 4y''/3 - 5 = 0

-3/3 x'' + 4/3 y'' - 5 = 0

-x'' + 4/3 y'' - 5 = 0

- x + 4/3 y - 5 = 0

Jadi, persamaannya menjadi - x + 4/3 y - 5 = 0

7.

MULTIPLE CHOICE QUESTION

3 mins • 2 pts

ABCD adalah jajargenjang. E adalah titik tengah AB. ruas garis DE memotong AC di titik P. perbandingan luas jajargenjang ABCD dengan luas segitiga AEP adalah...

12 : 1

8 : 1

6 : 1

4 : 1

Answer explanation

JajarGenjang ABCD

E tengah AB

P titik potong DE dan AC

Perhatikan segitiga APE dan DPC

AE/CD = AP/CP = PE/DP = t1/t2 = 1/2

t = tinggi jajargenjang

t1 = tinggi segitiga APE

t2 = tinggi segitiga DPC

t = t1 + t2

t1 = 1/3 t → t = 3 t1

Luas ∆APE = 1/2 × AE × t1

Luas ABCD = AB × t = 2 AE × 3 t1 = 6 AE × t1

Rasio luas ABCD dan APE

= (6 AE × t1) / (1/2 AE × t1)

= 6 × 2/1

= 12

= 12 : 1

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?