Mastering Data Preparation with Pandas

Mastering Data Preparation with Pandas

University

15 Qs

quiz-placeholder

Similar activities

Taller SQL

Taller SQL

University

10 Qs

SELECT * FROM BRAIN

SELECT * FROM BRAIN

University

20 Qs

Data Preprocessing - Paatshala Quiz

Data Preprocessing - Paatshala Quiz

University

10 Qs

Python Quiz- 1.9

Python Quiz- 1.9

University

12 Qs

Business Analytics using Python Quiz

Business Analytics using Python Quiz

University

10 Qs

Data Analytics using Python - Quiz 2

Data Analytics using Python - Quiz 2

University

15 Qs

Talent5 - Hỏi đáp

Talent5 - Hỏi đáp

University

15 Qs

Unveil Data Science

Unveil Data Science

University

12 Qs

Mastering Data Preparation with Pandas

Mastering Data Preparation with Pandas

Assessment

Quiz

Computers

University

Easy

Created by

María de los Angeles Constantino González

Used 2+ times

FREE Resource

15 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is the purpose of data cleaning in pandas?

To automate data entry processes in pandas.

To reduce the size of the dataset in pandas.

The purpose of data cleaning in pandas is to improve data quality by correcting inaccuracies and inconsistencies.

To enhance data visualization in pandas.

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Name two common techniques for data cleaning in pandas.

Encoding categorical variables and feature scaling

Visualizing data and creating reports

Handling missing values and removing duplicates

Normalizing data and aggregating values

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

How can you convert a column's data type in a DataFrame?

Use the 'convert()' function on the DataFrame.

Change the data type in the DataFrame settings.

Use the 'astype()' method on the DataFrame column.

Apply the 'transform()' method to the DataFrame column.

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

How do you merge two DataFrames on a common column?

Join df1 and df2 using df1.append(df2)

Combine df1 and df2 with df1 + df2

Use pd.merge(df1, df2, on='common_column')

Use df1.concat(df2, axis=1)

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

How can you reset the index of a DataFrame after a groupby operation?

df.agg('function').groupby('column_name').reset()

df.reset_index().groupby('column_name')

df.groupby('column_name').agg('function').reset_index()

df.groupby('column_name').sum()

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What function would you use to concatenate two DataFrames vertically?

Use df1 + df2

Use pd.concat([df1, df2])

Use df1.merge(df2)

Use df1.append(df2)

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

How can you filter rows in a DataFrame based on a condition?

Use df[df['column'] == value]

Use df.select('condition')

Use df.query('condition')

Use df.filter('condition')

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?