Recommender Systems Complete Course Beginner to Advanced - Deep Learning Foundation for Recommender Systems: Embeddings

Recommender Systems Complete Course Beginner to Advanced - Deep Learning Foundation for Recommender Systems: Embeddings

Assessment

Interactive Video

Information Technology (IT), Architecture, Social Studies

University

Hard

Created by

Quizizz Content

FREE Resource

The video tutorial explains how deep learning recommendation models are built using techniques like factorization and embeddings. It describes embeddings as vectors representing entity features, ensuring similar entities have similar distances in vector space. An example is given with users rating movies, illustrating how features are created based on user-item interactions. The model learns user and item embeddings, determining distances in vector space. A function is developed to recommend items based on user context and embeddings. The tutorial concludes with a recap and hints at future topics.

Read more

1 questions

Show all answers

1.

OPEN ENDED QUESTION

3 mins • 1 pt

What new insight or understanding did you gain from this video?

Evaluate responses using AI:

OFF