Search Header Logo

Logarithms Review for Calculus

Authored by Emily Beski

Mathematics

9th - 12th Grade

Used 42+ times

Logarithms Review for Calculus
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

16 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Logarithmic functions are the inverse of...

Linear Functions

Exponential Functions

Quadratic Functions

Polynomial Functions

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Exponential functions are the inverse of...

Linear Functions

Polynomial Functions

Quadratic Functions

Logarithmic Functions

3.

MULTIPLE SELECT QUESTION

30 sec • 1 pt

Which number(s) are the most common bases for logarithms?

11

1010

ee

π\pi

4.

MULTIPLE SELECT QUESTION

30 sec • Ungraded

Which logarithmic properties do you remember learning about in previous courses?

Product Property

Quotient Property

Power Property

Change of Base Property

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which of the following illustrates the Product Property of Logarithms?

 log3(x)+log3(y)=log3(x+y)\log_3\left(x\right)+\log_3\left(y\right)=\log_3\left(x+y\right)  

 log3(x)log3(y)=log3(xy)\log_3\left(x\right)\cdot\log_3\left(y\right)=\log_3\left(xy\right)  

 log3(x)+log3(y)=log3(xy)\log_3\left(x\right)+\log_3\left(y\right)=\log_3\left(xy\right)  

 log3(x)log3(y)=log3(x+y)\log_3\left(x\right)\cdot\log_3\left(y\right)=\log_3\left(x+y\right)  

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which of the following illustrates the Quotient Property of Logarithms?

 log4(x)log4(y)=log4(xy)\log_4\left(x\right)-\log_4\left(y\right)=\log_4\left(x-y\right)  

 log4(x)÷log4(y)=log4(xy)\log_4\left(x\right)\div\log_4\left(y\right)=\log_4\left(\frac{x}{y}\right)  

 log4(x)log4(y)=log4(xy)\log_4\left(x\right)-\log_4\left(y\right)=\log_4\left(\frac{x}{y}\right)  

 log4(x)÷log4(y)=log4(xy)\log_4\left(x\right)\div\log_4\left(y\right)=\log_4\left(x-y\right)  

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which of the following illustrates the Power Property of Logarithms?

log5(mn)=n+log5(m)\log_5\left(m^n\right)=n+\log_5\left(m\right)

log5(mn)=nlog5(m)\log_5\left(m^n\right)=n\cdot\log_5\left(m\right)

log5(mn)=log5(nm)\log_5\left(m^n\right)=\log_5\left(n\cdot m\right)

log5(mn)=log5n(m)\log_5\left(m^n\right)=\log_{5n}\left(m\right)

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?