Search Header Logo

Derivative Rules and Graphs

Mathematics

11th - 12th Grade

10 Questions

CCSS covered

Used 1+ times

Derivative Rules and Graphs
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

f(x) will have a maximum when f'(x) changes from

increasing to decreasing

decreasing to increasing

negative to positive

positive to negative

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Which graph represents the derivative of this graph?

Media Image
Media Image
Media Image
Media Image

Tags

CCSS.HSF.BF.B.3

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

The graph of f'(x) is shown above.

f(x) is increasing over what interval?

(,5)(2,1)\left(-\infty,-5\right)\cup\left(-2,1\right)

(5,2)(1,)\left(-5,-2\right)\cup\left(1,\infty\right)

(,4)(0,)\left(-\infty,-4\right)\cup\left(0,\infty\right)

(4,0)\left(-4,0\right)

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

If f'(x) is increasing, then f''(x) is

positive

negative

increasing

decreasing

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

What is the derivative of  f(x)g(x)\frac{f\left(x\right)}{g\left(x\right)}  ?

 g(x)f(x)+f(x)g(x)(g(x))2\frac{g'\left(x\right)f\left(x\right)+f'\left(x\right)g\left(x\right)}{\left(g\left(x\right)\right)^2}  

 g(x)f(x)+f(x)g(x)(g(x))2\frac{g\left(x\right)f'\left(x\right)+f\left(x\right)g'\left(x\right)}{\left(g\left(x\right)\right)^2}  

 g(x)f(x)f(x)g(x)(g(x))2\frac{g'\left(x\right)f\left(x\right)-f'\left(x\right)g\left(x\right)}{\left(g\left(x\right)\right)^2}  

 g(x)f(x)f(x)g(x)(g(x))2\frac{g\left(x\right)f'\left(x\right)-f\left(x\right)g'\left(x\right)}{\left(g\left(x\right)\right)^2}  

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

The graph of f is shown above.

Which graph represents the graph of f'(x)?

Media Image
Media Image
Media Image
Media Image

Tags

CCSS.HSF.IF.B.4

CCSS.HSF.IF.C.7

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 limh0 2(3+h)24(3+h)6h=\lim_{h\rightarrow0}\ \frac{2\left(3+h\right)^2-4\left(3+h\right)-6}{h}=  

-6

6

8

10

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?