Show solutions AP Calculus Test1

Show solutions AP Calculus Test1

10th - 12th Grade

11 Qs

quiz-placeholder

Similar activities

Integral Tak Tentu

Integral Tak Tentu

11th - 12th Grade

10 Qs

DE's and Mathematical Modelling Quiz 1

DE's and Mathematical Modelling Quiz 1

12th Grade - University

10 Qs

Trigo, Expo, Log Integration Practice

Trigo, Expo, Log Integration Practice

11th Grade

10 Qs

Turunan Fungsi Aljabar

Turunan Fungsi Aljabar

10th - 12th Grade

10 Qs

nguyên hàm tích phân

nguyên hàm tích phân

12th Grade

15 Qs

高三理数学(CH3)

高三理数学(CH3)

12th Grade

10 Qs

CALCULO INTEGRAL

CALCULO INTEGRAL

10th Grade - University

15 Qs

Derivatives Speed Quiz 4

Derivatives Speed Quiz 4

12th Grade

16 Qs

Show solutions AP Calculus Test1

Show solutions AP Calculus Test1

Assessment

Quiz

10th - 12th Grade

Hard

CCSS
8.EE.B.5, HSF.TF.C.9

Standards-aligned

Created by

viczz Gengania

FREE Resource

11 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Find the slope of the tangent line to f(x) = -3x2-6x at x = 1.
m = 0
m = 12
m = -9
m = -12

Tags

CCSS.8.EE.B.5

2.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Find the derivative f(x) = (x2 + 2x)5
f'(x) = 5(2x+2)4
f'(x) = 5(x2 + 2x)4
 f'(x) = 5(x2 + 2x)4(2x)
f'(x) = 5(x2 + 2x)4(2x + 2)

3.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

If  x2 + xy = 10, x^2\ +\ xy\ =\ 10,\  then when x = 2,  dydx\frac{\text{d}y}{\text{d}x}   is

A      72-\frac{7}{2}  

B      72\frac{7}{2}  

C      27\frac{2}{7}  

D        27-\frac{2}{7}  

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

f(x)=(sin2x), f'(x)= ?
2sin x
2(sin x)(cos x)
2cos x
2x(cos x)

Tags

CCSS.HSF.TF.C.9

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

What is y' if  y = sin(x32x)y\ =\ \sin\left(x^3-2x\right)  

(3x2-2) cos(x3-2x)

-(3x2-2) cos(x3-2x)

cos(2x2-2)

sin(2x2-2)

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is the speed of the position function f(x)=-3x2-6x-6 at x=2 (speed is the absolute value of velocity)

-18

18

-6

6

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

The radius of a circle is decreasing at a constant rate of .1 centimeters per second. In terms of the circumference C, what is the rate of change of the area of the circle, in square centimeters per second?

(0.2)πC

-(.1)C

(.1)C2π\frac{\ \ \left(.1\right)C}{2\pi}

(.1)2C\left(.1\right)^2C

(.1)2πC\left(.1\right)^2\pi C

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?