Search Header Logo

MA261 Fall 2018 quiz

Authored by Leader board

Mathematics

University

CCSS covered

Used 4+ times

MA261 Fall 2018 quiz
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Which of the following pairs of planes are orthogonal to each other?

x + 10y − z = 6, −9x − y − 19z = 2

5x + 8y = −3, y + 6z = 1

x = 5z + 3y, 8x − 6y + 2z = −1

8x + 5y = −3, 9y + 6z = −1

8x + 5y = −3, y + 6z = −1

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Media Image

Which of the following equations produces a surface that is NOT shown here?

x2+y2z2=1-x^2+y^2-z^2=1

9x2+4y2+z2=19x^2+4y^2+z^2=1

y=x2z2y=x^2-z^2

x2y2+z2=1x^2-y^2+z^2=1

y=2x2+z2y=2x^2+z^2

Tags

CCSS.7.G.A.3

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find a so that the point (3, a, 1) is on the tangent plane to  z=exy4x2y+3y2z=e^{xy}-4x^2y+3y^2  at (0,1,4).

 12\frac{1}{2}  

 12-\frac{1}{2}  

 17-\frac{1}{7}  

0

 16\frac{1}{6}  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the directional derivative of  f(x,y)=4x2+3yf\left(x,y\right)=\sqrt{4x^2+3y}  at (2,3) in the direction of  i2j\overrightarrow{i}-2\overrightarrow{j}  .

 15\frac{1}{5}  

 25\frac{2}{5}  

 15\frac{1}{\sqrt{5}}  

 115\frac{11}{\sqrt{5}}  

 115\frac{11}{5}  

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

For the level surface 3y2z+xz2=103y^2z+xz^2=10  find  2zx+zy2\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}  at (1,-1,2)

 45\frac{4}{5}  

 207\frac{20}{7}  

 47\frac{4}{7}  

 15\frac{1}{5}  

 47-\frac{4}{7}  

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Find the minimum value of f(x, y) = 2x + 3y + 2 given that 2x2+5xy+4y2=282x^2+5xy+4y^2=28  

-1

-2

-3

-6

-8

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Let f(x,y)=(x2+y2)exf\left(x,y\right)=\left(x^2+y^2\right)e^x  . This function has

a local max. and a local min. point

 two local max. points 

a local max. and a saddle point

 two local max. points 

a local min. and a saddle point

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?