Search Header Logo

тригонометрия

Authored by Dauren Tolbassy

Mathematics

11th Grade

Used 106+ times

тригонометрия
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

16 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

  tgx3\ tgx\le\sqrt{3}  

 [π3+πn;π2+πn]\left[\frac{\pi}{3}+\pi n;\frac{\pi}{2}+\pi n\right]  

 [π3+πn;π2+πn)\left[\frac{\pi}{3}+\pi n;\frac{\pi}{2}+\pi n\right)  

 [π2+πn;π3+πn)\left[-\frac{\pi}{2}+\pi n;\frac{\pi}{3}+\pi n\right)  

 (π2+πn;π3+πn]\left(-\frac{\pi}{2}+\pi n;\frac{\pi}{3}+\pi n\right]  

2.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 sin3x12\sin3x\ge\frac{1}{\sqrt{2}}  

 [π12+2πn3;π4+2πn3;]\left[\frac{\pi}{12}+\frac{2\pi n}{3};\frac{\pi}{4}+\frac{2\pi n}{3};\right]  

 [π4+2πn;3π4+2πn;]\left[\frac{\pi}{4}+2\pi n;\frac{3\pi}{4}+2\pi n;\right]  

 [π12+2πn;π4+2πn;]\left[-\frac{\pi}{12}+2\pi n;\frac{\pi}{4}+2\pi n;\right]  

 [3π4+6πn;π4+6πn;]\left[\frac{3\pi}{4}+6\pi n;\frac{\pi}{4}+6\pi n;\right]  

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 cos2x>32\cos2x>-\frac{\sqrt{3}}{2}  

 (5π12+2πn2;5π4+2πn2;)\left(-\frac{5\pi}{12}+\frac{2\pi n}{2};\frac{5\pi}{4}+\frac{2\pi n}{2};\right)  

 (5π12+2πn2;5π12+2πn2;)\left(-\frac{5\pi}{12}+\frac{2\pi n}{2};\frac{5\pi}{12}+\frac{2\pi n}{2};\right)  

 (π12+2πn;π4+2πn;)\left(-\frac{\pi}{12}+2\pi n;\frac{\pi}{4}+2\pi n;\right)  

 (2π3+2πn2;2π3+2πn2;)\left(-\frac{2\pi}{3}+\frac{2\pi n}{2};\frac{2\pi}{3}+\frac{2\pi n}{2};\right)  

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 ctg(x3+π6)3\operatorname{ctg}\left(\frac{x}{3}+\frac{\pi}{6}\right)\le-\sqrt{3}  

 [2π+3πk; 2.5π+3πk]\left[-2\pi+3\pi k;\ 2.5\pi+3\pi k\right]  

 (2π+3πk; 2.5π+3πk)\left(2\pi+3\pi k;\ 2.5\pi+3\pi k\right)  

 [2π+3πk; 53π+3πk)\left[2\pi+3\pi k;\ \frac{5}{3}\pi+3\pi k\right)  

 (2π3+2πn2;2π3+2πn2;)\left(-\frac{2\pi}{3}+\frac{2\pi n}{2};\frac{2\pi}{3}+\frac{2\pi n}{2};\right)  

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 2tg(xπ6)312tg\left(x-\frac{\pi}{6}\right)-3\le-1  

 (4π3+πk; 5π12+πk)\left(-\frac{4\pi}{3}+\pi k;\ \frac{5\pi}{12}+\pi k\right)  

 (2π3+πk; 5π12+πk]\left(-\frac{2\pi}{3}+\pi k;\ \frac{5\pi}{12}+\pi k\right]  

 (π3+πk; 5π12+πk)\left(-\frac{\pi}{3}+\pi k;\ \frac{5\pi}{12}+\pi k\right)  

 (π3+πk; 5π12+πk]\left(-\frac{\pi}{3}+\pi k;\ \frac{5\pi}{12}+\pi k\right]  

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 3tg(4xπ3)3<03tg\left(-4x-\frac{\pi}{3}\right)-3<0  

 [7π48+πk4;π24+πk4]\left[\frac{-7\pi}{48}+\frac{\pi k}{4};\frac{\pi}{24}+\frac{\pi k}{4}\right]  

 (7π48+πk4;5π24+πk4)\left(\frac{-7\pi}{48}+\frac{\pi k}{4};\frac{5\pi}{24}+\frac{\pi k}{4}\right)  

 (7π48+πk4;π24+πk4)\left(\frac{-7\pi}{48}+\frac{\pi k}{4};\frac{\pi}{24}+\frac{\pi k}{4}\right)  

 (7π48+πk4;π24+πk4]\left(\frac{-7\pi}{48}+\frac{\pi k}{4};\frac{\pi}{24}+\frac{\pi k}{4}\right]  

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 2ctg( x3π6)+1202\operatorname{ctg}(\ \frac{x}{3}-\frac{\pi}{6})+\sqrt{12}\ge0  

 (π2+3πk;3π+3πk)\left(-\frac{\pi}{2}+3\pi k;3\pi+3\pi k\right)  

 (π2+3πk;3π+3πk]\left(\frac{\pi}{2}+3\pi k;3\pi+3\pi k\right]  

 (π4+3πk;π+3πk]\left(\frac{\pi}{4}+3\pi k;\pi+3\pi k\right]  

 (π8+3πk;2π+3πk)\left(\frac{\pi}{8}+3\pi k;2\pi+3\pi k\right)  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?