Search Header Logo

Convergence & Divergence

Authored by Julie Purvis

Mathematics

11th - 12th Grade

5 Questions

Used 30+ times

Convergence & Divergence
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which of the following series Diverge?
I.  n=11n2\sum_{n=1}^{\infty}\frac{1}{n^2}      II.  n=11n\sum_{n=1}^{\infty}\frac{1}{n}      III.  n=11n\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}  

I

II

II and III

I and III

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 n=11n2\sum_{n=1}^{\infty}\frac{1}{n^2}  can be used to determine the convergence or divergence  with a limit comparison test for which series?

 n=1nn3+n2\sum_{n=1}^{\infty}\frac{n}{n^3+n^2}  

 n=1sin nn2\sum_{n=1}^{\infty}\frac{\sin\ n}{n^2}  

 n=11n4+2n\sum_{n=1}^{\infty}\frac{1}{\sqrt{n^4+2n}}  

all of the above

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which of the following series should you use the ratio test to determine convergence or divergence?

n=1n2+n3n2+5\sum_{n=1}^{\infty}\frac{n^2+n}{3n^2+5}

n=1nnn!\sum_{n=1}^{\infty}\frac{n^n}{n!}

n=1ln nn\sum_{n=1}^{\infty}\frac{\ln\ n}{n}

n=112n\sum_{n=1}^{\infty}\frac{1}{2^n}

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which series diverges by the nth term test?

n=1nn!\sum_{n=1}^{\infty}\frac{n}{n!}

n=13n5n\sum_{n=1}^{\infty}\frac{3^n}{5^n}

n=15n23n3+n2\sum_{n=1}^{\infty}\frac{5n^2}{3n^3+n^2}

n=11tan1n\sum_{n=1}^{\infty}\frac{1}{\tan^{-1}n}

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which series can the integral test be used to determine convergence or divergence?

n=1nen2+n\sum_{n=1}^{\infty}\frac{n}{e^{n^2}+n}

n=1lnnn\sum_{n=1}^{\infty}\frac{\ln n}{n}

n=1sin1n1n2\sum_{n=1}^{\infty}\frac{\sin^{-1}n}{\sqrt{1-n^2}}

all of the above

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?