Log Properties

Log Properties

10th - 12th Grade

16 Qs

quiz-placeholder

Similar activities

Logaritmos

Logaritmos

12th Grade

15 Qs

Transformations of Logarithmic Functions

Transformations of Logarithmic Functions

10th - 12th Grade

15 Qs

Logarithms and Properties

Logarithms and Properties

9th - 12th Grade

20 Qs

logaritmos

logaritmos

10th Grade

13 Qs

Quiz: Graphs of Exponentials and Logarithmic f(x)

Quiz: Graphs of Exponentials and Logarithmic f(x)

10th - 12th Grade

15 Qs

Pangkat, Akar dan Logaritma

Pangkat, Akar dan Logaritma

10th Grade

20 Qs

Phương trình mũ, phương trình logarit

Phương trình mũ, phương trình logarit

12th Grade

15 Qs

M4U4D3 Practice Properties of Logs

M4U4D3 Practice Properties of Logs

11th - 12th Grade

15 Qs

Log Properties

Log Properties

Assessment

Quiz

Mathematics

10th - 12th Grade

Medium

CCSS
HSA.SSE.B.3, HSF.BF.B.5, HSF.IF.C.8

+1

Standards-aligned

Created by

Nicole Baker

Used 468+ times

FREE Resource

16 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Use the property Logb(xy) = Logb(x) + Logb(y)

to expand: Log3(5x)

log2(5) × log2(x)\log_2\left(5\right)\ \times\ \log_2\left(x\right)

log2(5) + log2(x)\log_2\left(5\right)\ +\ \log_2\left(x\right)

log2(5) log2(x)\log_2\left(5\right)\ -\ \log_2\left(x\right)

log2(5 + x) \log_2\left(5\ +\ x\right)\

Tags

CCSS.HSA.SSE.A.2

CCSS.HSA.SSE.B.3

CCSS.HSF.BF.B.5

CCSS.HSF.IF.C.8

2.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Use the property  logb(xy) = logb(x)  logb(y)\log_b\left(\frac{x}{y}\right)\ =\ \log_b\left(x\right)\ -\ \log_b\left(y\right)  
to expand  log2(x4) \log_2\left(\frac{x}{4}\right)\   

 log2(x) × log2(4)\log_2\left(x\right)\ \times\ \log_2\left(4\right) 

 log2(x) + log2(4)\log_2\left(x\right)\ +\ \log_2\left(4\right) 

 log2(x)  log2(4)\log_2\left(x\right)\ -\ \log_2\left(4\right) 

 log2(5)  log2(x) \log_2\left(5\right)\ -\ \log_2\left(x\right)\  

Tags

CCSS.HSA.SSE.B.3

CCSS.HSF.BF.B.5

CCSS.HSF.IF.C.8

3.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Use the property  logb(x)a = alogb(x) \log_b\left(x\right)^a\ =\ a\log_b\left(x\right)\   
to expand  log5(x)2 \log_5\left(x\right)^2\   

 5log2(x) 5\log_2\left(x\right)\  

 2log5(x) 2\log_5\left(x\right)\  

 log5(x) + log5(2)\log_5\left(x\right)\ +\ \log_5\left(2\right) 

 log5(x)  log5(2) \log_5\left(x\right)\ -\ \log_5\left(2\right)\  

Tags

CCSS.HSA.SSE.A.2

CCSS.HSA.SSE.B.3

CCSS.HSF.BF.B.5

CCSS.HSF.IF.C.8

4.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Use the change of base property  logb(x) = loga(x)loga(b) \log_b\left(x\right)\ =\ \frac{\log_a\left(x\right)}{\log_a\left(b\right)}\   
to write  log2(16) \log_2\left(16\right)\   with the common base

 log(8)\log\left(8\right) 

 log(16)log(2)\frac{\log\left(16\right)}{\log\left(2\right)} 

 log(2)log(16)\frac{\log\left(2\right)}{\log\left(16\right)} 

 log(16) + log(2) \log\left(16\right)\ +\ \log\left(2\right)\  

Tags

CCSS.HSF.BF.B.5

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Expand  log4(6y)\log_4\left(6y\right)  

 log4(6) + log4(y)\log_4\left(6\right)\ +\ \log_4\left(y\right) 

 log4(6)  log4(y)\log_4\left(6\right)\ -\ \log_4\left(y\right) 

 ylog4(6) y\log_4\left(6\right)\  

 log4(6y) \log_4\left(\frac{6}{y}\right)\  

Tags

CCSS.HSA.SSE.A.2

CCSS.HSA.SSE.B.3

CCSS.HSF.BF.B.5

CCSS.HSF.IF.C.8

6.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Expand  log4(3xy)\log_4\left(3xy\right)  

 log4(3) + log4(x) log4(y)\log_4\left(3\right)\ +\ \log_4\left(x\right)-\ \log_4\left(y\right) 

 3log4(x) + 3log4(y)3\log_4\left(x\right)\ +\ 3\log_4\left(y\right) 

 log4(3) + log4(x)+ log4(y) \log_4\left(3\right)\ +\ \log_4\left(x\right)+\ \log_4\left(y\right)\  

 4log(3) + 4log(x)+ 4log(y) 4\log\left(3\right)\ +\ 4\log\left(x\right)+\ 4\log\left(y\right)\  

Tags

CCSS.HSA.SSE.B.3

CCSS.HSF.BF.B.5

CCSS.HSF.IF.C.8

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Expand  log2(3y2)\log_2\left(3y^2\right)  

 log2(3) + log2(y)\log_2\left(3\right)\ +\ \log_2\left(y\right) 

 2log2(3) + 2log2(y)2\log_2\left(3\right)\ +\ 2\log_2\left(y\right) 

 log2(3) + 2log2(y)\log_2\left(3\right)\ +\ 2\log_2\left(y\right) 

 log2(3y2) \log_2\left(\frac{3}{y^2}\right)\  

Tags

CCSS.HSA.SSE.A.2

CCSS.HSA.SSE.B.3

CCSS.HSF.IF.C.8

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?