LT 15 Solving Trig Equations

LT 15 Solving Trig Equations

9th - 11th Grade

17 Qs

quiz-placeholder

Similar activities

Ch. 5 Trig.  Extra Credit

Ch. 5 Trig. Extra Credit

11th - 12th Grade

22 Qs

Solving Trig Equations

Solving Trig Equations

11th Grade

19 Qs

Chapter 6 Solving trig equations

Chapter 6 Solving trig equations

10th - 12th Grade

20 Qs

HÀM SỐ LƯỢNG GIÁC

HÀM SỐ LƯỢNG GIÁC

11th Grade

20 Qs

Solving Trigonometric Equations final day

Solving Trigonometric Equations final day

11th - 12th Grade

14 Qs

Simplifying/Verifying Trig Identities

Simplifying/Verifying Trig Identities

10th - 12th Grade

12 Qs

Calculus - TRIG derivatives & integrals

Calculus - TRIG derivatives & integrals

11th Grade - University

12 Qs

Trig Identities

Trig Identities

11th - 12th Grade

18 Qs

LT 15 Solving Trig Equations

LT 15 Solving Trig Equations

Assessment

Quiz

Mathematics

9th - 11th Grade

Medium

CCSS
HSA.REI.B.4, HSA.APR.C.4, HSF.TF.B.7

+2

Standards-aligned

Created by

Jonathan Kell

Used 48+ times

FREE Resource

17 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Solve equation for  0θ<2π0\le\theta<2\pi  .
 3sin2θ+4=5+sin2θ3\sin^2\theta+4=5+\sin^2\theta  

 θ=π4,5π4,7π4\theta=\frac{\pi}{4},\frac{5\pi}{4},\frac{7\pi}{4}  

 θ=π4,7π4\theta=\frac{\pi}{4},\frac{7\pi}{4}  

 θ=π4,3π4\theta=\frac{\pi}{4},\frac{3\pi}{4}  

 θ=π4,3π4,5π4,7π4\theta=\frac{\pi}{4},\frac{3\pi}{4},\frac{5\pi}{4},\frac{7\pi}{4}  

Tags

CCSS.HSA.REI.B.4

CCSS.HSF.TF.B.7

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Solve for x:
 cos2x=0  solve for the interval 0°x360°\cos2x=0\ \ solve\ for\ the\ interval\ 0\degree\le x\le360\degree  

 45°, 225°45\degree,\ 225\degree  

 135°, 315°135\degree,\ 315\degree  

 45°, 135°, 225°, 315°45\degree,\ 135\degree,\ 225\degree,\ 315\degree  

no solution

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 tan x + 3=0\tan\ x\ +\ \sqrt{3}=0   Solve for ALL values in terms of πSolve\ for\ ALL\ values\ in\ terms\ of\ \pi  

 x = 2π3+πnx\ =\ \frac{2\pi}{3}+\pi n  

 x=2π3+2πnx=\frac{2\pi}{3}+2\pi n  

 x=π3+πnx=\frac{\pi}{3}+\pi n  

 x=π3+2πnx=\frac{\pi}{3}+2\pi n  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Solve for all values of x over the interval  0x2π0\le x\le2\pi  

3π4and 5π4 \frac{3π}{4}and\ \frac{5π}{4}\

π4and 3π4\frac{π}{4}and\ \frac{3π}{4}

π4,3π4,5π4 and 7π4\frac{π}{4},\frac{3π}{4},\frac{5π}{4}\ and\ \frac{7π}{4}

π6 and 5π6\frac{\pi}{6}\ and\ \frac{5\pi}{6}

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Solve for all values of x over the interval  0x2π0\le x\le2\pi  

π2\frac{\pi}{2}

 π2 and  π\frac{\pi}{2}\ and\ \ \pi 

DNE

π\pi

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 2sinx1=02\sin x-1=0   Solve for ALL values in terms of πSolve\ for\ ALL\ values\ in\ terms\ of\ \pi  

 x=π6+2πn,    x=5π6+2πnx=\frac{\pi}{6}+2\pi n,\ \ \ \ x=\frac{5\pi}{6}+2\pi n  

 x=π3+πn,     x = 2π3+πnx=\frac{\pi}{3}+\pi n,\ \ \ \ \ x\ =\ \frac{2\pi}{3}+\pi n  

 x=π6+2πn,     x=7π6+2πnx=\frac{\pi}{6}+2\pi n,\ \ \ \ \ x=\frac{7\pi}{6}+2\pi n  

No Solution

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

To solve this equation, cos2x + sinx = 1, replace cos2x with

1/(sec2x)

sin2x − 1

1 − sin2x

1 + tan2x

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?