AP Calculus BC Final

AP Calculus BC Final

11th - 12th Grade

10 Qs

Student preview

quiz-placeholder

Similar activities

ÔN BẢNG NGUYÊN HÀM

ÔN BẢNG NGUYÊN HÀM

12th Grade

15 Qs

Module 4 Exercise 5

Module 4 Exercise 5

10th - 11th Grade

10 Qs

Natural Base and Natural Logarithms

Natural Base and Natural Logarithms

11th Grade

15 Qs

Integration

Integration

12th Grade

12 Qs

Propiedades de los logaritmos

Propiedades de los logaritmos

11th Grade

10 Qs

:x Học :x (Hs Mũ - Hs Lôgarit)

:x Học :x (Hs Mũ - Hs Lôgarit)

12th Grade

10 Qs

nguyên hàm tích phân

nguyên hàm tích phân

12th Grade

15 Qs

Derivatives of Logs and Exponentials

Derivatives of Logs and Exponentials

11th - 12th Grade

10 Qs

AP Calculus BC Final

AP Calculus BC Final

Assessment

Quiz

Created by

Eniko Kuch

Mathematics

11th - 12th Grade

6 plays

Medium

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Find the indefinite integral.
 x3 ln(x) dx\int x^3\ \ln\left(x\right)\ dx  

 x49 [ln(x4)1]+C\frac{x^4}{9}\ \left[\ln\left(x^4\right)-1\right]+C  

 x316 [ln(x3)1]+C\frac{x^3}{16}\ \left[\ln\left(x^3\right)-1\right]+C  

 x216 [ln(x2)1]+C\frac{x^2}{16}\ \left[\ln\left(x^2\right)-1\right]+C  

 x416 [ln(x4)1]+C\frac{x^4}{16}\ \left[\ln\left(x^4\right)-1\right]+C  

 x416 [ln(x3)1]+C\frac{x^4}{16}\ \left[\ln\left(x^3\right)-1\right]+C  

2.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Use partial fractions to find the integral.
  13x109x213x+30dx\int\ \frac{13x-109}{x^2-13x+30}dx  

 10 lnx3+3ln x10+C10\ \ln\left|x-3\right|+3\ln\ \left|x-10\right|+C  

 10 x+30ln3x+3x+30ln 10x+C10\ x+30\ln\left|3-x\right|+3x+30\ln\ \left|10-x\right|+C  

 10 lnx33ln x10+C10\ \ln\left|x-3\right|-3\ln\ \left|x-10\right|+C  

 10 x+30ln3x3x+30ln 10x+C10\ x+30\ln\left|3-x\right|-3x+30\ln\ \left|10-x\right|+C  

 10x+30 ln3x+3ln 10x+C10x+30\ \ln\left|3-x\right|+3\ln\ \left|10-x\right|+C  

3.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Determine whether the improper integral diverges or converges. Evaluate the integral if it converges.
 01 1(1x)19 dx\int_0^1\ \frac{1}{\left(1-x\right)^{\frac{1}{9}}}\ dx  

diverges

 converges to 98converges\ to\ \frac{9}{8}  

 converges to 9converges\ to\ 9  

 converges to 89converges\ to\ \frac{8}{9}  

 converges to 8converges\ to\ 8  

4.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Find the sum of the convergent series.
 n=13(n+9)(n+11)\sum_{n=1}^{\infty}\frac{3}{\left(n+9\right)\left(n+11\right)}  

 117220\frac{117}{220}  

 1960\frac{19}{60}  

 45143\frac{45}{143}  

 63220\frac{63}{220}  

 59110\frac{59}{110}  

5.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Find the Maclaurin polynomial of degree 4 for the function.

 f(x)=cos(3x)f\left(x\right)=\cos\left(3x\right)  

 1+92x2278x41+\frac{9}{2}x^2-\frac{27}{8}x^4  

 192x2+8140x41-\frac{9}{2}x^2+\frac{81}{40}x^4  

 192x2+278x41-\frac{9}{2}x^2+\frac{27}{8}x^4  

 1+92x28140x41+\frac{9}{2}x^2-\frac{81}{40}x^4  

 x92x38140x5x-\frac{9}{2}x^3-\frac{81}{40}x^5  

6.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Find a geometric power series for the function centered at 0.
 f(x)=59xf\left(x\right)=\frac{5}{9-x}  

 n=05(x9)n  ,   x<9\sum_{n=0}^{\infty}5\left(\frac{-x}{9}\right)^n\ \ ,\ \ \ \left|x\right|<9  

 n=059(x)n  ,   x<1\sum_{n=0}^{\infty}\frac{5}{9}\left(-x\right)^n\ \ ,\ \ \ \left|x\right|<1  

 n=059(9x)n  ,   x<9\sum_{n=0}^{\infty}\frac{5}{9}\left(-9x\right)^n\ \ ,\ \ \ \left|x\right|<9  

 n=059(x9)n  ,   x<9\sum_{n=0}^{\infty}\frac{5}{9}\left(\frac{x}{9}\right)^n\ \ ,\ \ \ \left|x\right|<9  

None of the above

7.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Use the definition to find the Taylor series (centered at c) for the function.
 f(x)=cos(x) , c=π4f\left(x\right)=\cos\left(x\right)\ ,\ c=\frac{\pi}{4}  

 22+22(xπ4)22(2!)(xπ4)222(3!)(xπ4)3.....\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)-\frac{\sqrt{2}}{2\left(2!\right)}\left(x-\frac{\pi}{4}\right)^2-\frac{\sqrt{2}}{2\left(3!\right)}\left(x-\frac{\pi}{4}\right)^3-.....  

 2222(xπ4)22(2!)(xπ4)2+22(3!)(xπ4)3.....\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)-\frac{\sqrt{2}}{2\left(2!\right)}\left(x-\frac{\pi}{4}\right)^2+\frac{\sqrt{2}}{2\left(3!\right)}\left(x-\frac{\pi}{4}\right)^3-.....  

 22+22(xπ4)+22(2!)(xπ4)222(3!)(xπ4)3+.....\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)+\frac{\sqrt{2}}{2\left(2!\right)}\left(x-\frac{\pi}{4}\right)^2-\frac{\sqrt{2}}{2\left(3!\right)}\left(x-\frac{\pi}{4}\right)^3+.....  

 2222(xπ4)22(2!)(xπ4)2+22(3!)(xπ4)3+.....\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)-\frac{\sqrt{2}}{2\left(2!\right)}\left(x-\frac{\pi}{4}\right)^2+\frac{\sqrt{2}}{2\left(3!\right)}\left(x-\frac{\pi}{4}\right)^3+.....  

 2222(xπ4)22(2!)(xπ4)222(3!)(xπ4)3.....\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)-\frac{\sqrt{2}}{2\left(2!\right)}\left(x-\frac{\pi}{4}\right)^2-\frac{\sqrt{2}}{2\left(3!\right)}\left(x-\frac{\pi}{4}\right)^3-.....  

Explore all questions with a free account

or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?