Search Header Logo

Vector Calculus Gradient

Authored by Udai Bhan

Mathematics

University

CCSS covered

Used 83+ times

Vector Calculus Gradient
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

15 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

  a  and  b  are two non zero vectors then ( a  × b  ) is \overrightarrow{\ a\ }\ and\ \overrightarrow{\ b\ }\ are\ two\ non\ zero\ vectors\ then\ \left(\overrightarrow{\ a\ }\ \times\overrightarrow{\ b\ }\ \right)\ is\   

Parallel to   a \overrightarrow{\ a\ }  

Parallel to  b \overrightarrow{b\ }  

Perpendicular to   a . b \overrightarrow{\ a\ .}\overrightarrow{\ b\ }  

Perpendicular to   a \overrightarrow{\ a\ }  

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 i×( a ×i)+j×( a ×j)+k×( a ×k)=i\times\left(\overrightarrow{\ a\ }\times i\right)+j\times\left(\overrightarrow{\ a\ }\times j\right)+k\times\left(\overrightarrow{\ a\ }\times k\right)=  

0

  a \overrightarrow{\ a\ }  

 2 a 2\overrightarrow{\ a\ }  

3

3.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

The magnitude of vector  cosθ i+sinθ j+k\cos\theta\ i+\sin\theta\ j+k  is

2

 2\sqrt{2}   

3

1

Tags

CCSS.HSN.VM.A.1

4.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

 . r   =\nabla.\overrightarrow{\ r\ \ }\ = ,  or  div  r \overrightarrow{\ r\ }  =

3

1

2

  r \overrightarrow{\ r\ }  

5.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

 2ψ(x,y,z)=0, \nabla^2\psi\left(x,y,z\right)=0,\   the function  ψ\psi  is

Solenoidal

Irrotational

Harmonic

None of the above

6.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 r= r , r =xi+yj+zk, then Δr=r=\left|\overrightarrow{\ r\ }\right|,\overrightarrow{\ r\ }=xi+yj+zk,\ then\ \Delta r=  

 r2r^2  

  r \overrightarrow{\ r\ }  

 r3r^3  

  r r\frac{\overrightarrow{\ r\ }}{r}  

Tags

CCSS.HSN.VM.A.1

7.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

 ABf .d r \int_A^B\overrightarrow{f\ }.d\ \overrightarrow{r\ }  is,

Volume integral

Surface integral

Line integral

None of the above

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?